Kil/Kitosan ve Organokil/Kitosan nanokompozitlerinin üretimi ve karakterizasyonu

Bu çalışmanın amacı, tıpta ve endüstride pek çok farklı kullanım alanı olan kitosan biyopolimerinin özelliklerini tabakalı yapıdaki montmorillonit kili katkısı ile geliştirmektir. Kil tanelerinin kitosan içinde en ideal şekilde dağıldığı ve iki bileşenin en iyi şekilde etkileşebildiği uygun koşullar...

Full description

Saved in:
Bibliographic Details
Published in:İTÜ dergisi/c, (Fen bilimleri) Vol. 7; no. 1; pp. 45 - 53
Main Authors: GÜNGÖR, Nurfer, CANBAZ, Ebru, Günister
Format: Journal Article
Language:Turkish
Published: İstanbul Teknik Üniversitesi 2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bu çalışmanın amacı, tıpta ve endüstride pek çok farklı kullanım alanı olan kitosan biyopolimerinin özelliklerini tabakalı yapıdaki montmorillonit kili katkısı ile geliştirmektir. Kil tanelerinin kitosan içinde en ideal şekilde dağıldığı ve iki bileşenin en iyi şekilde etkileşebildiği uygun koşullar reolojik, elektrokinetik ve morfolojik yapı çalışmaları ile araştırılmıştır. Öncelikle montmorillonit tipi kil; sedimantasyon, santrifuj, diyaliz, kurutma ve öğütme işlemleri ile saflaştırılmış ve boyutları küçültülerek saf kil (SMt) elde edilmiştir. Hidrofilik yapıda olan SMt kilinin kitosan biyopolimeri ile optimum etkileşimini sağlamak amacı ile, kil katyonik bir yüzeyaktif olan hekzadesiltrimetil amonyum bromür (HDTABr) ile modifiye edilerek organofilik yapıya dönüştürülmüş ve HDTABr/kil (OSMt) organokili elde edilmiştir. SMt ve OSMt killerinin su bazlı dispersiyonlarında reolojik, elektrokinetik ölçümler ve mikroyapı analizleri yapılarak özellikleri belirlenmiştir. Çözeltilerin birleştirilmesi yöntemi ile kil ve organokil, kitosan polimeri ile etkileştirilerek nanokompozit filmler elde edilmiştir. Kil ve organokil miktarı farklı olarak sentezlenen kil/kitosan nanokompozit filmlerinin mikro yapıları X ışını kırınımı (XRD) ve geçirmeli elektron mikroskobu (TEM) analizleri ile, termal özellikleri diferansiyel taramalı kalorimetri (DSC) ve termogravimetrik analiz (TGA) yöntemleriyle belirlenmiştir. Kompozitler kilin veya organokilin kitosan biyopolimeri ile etkileşimine göre yapraklanmış veya tabakalaşmış nanokompozitler olarak tanımlanmışlardır. Sentezlenen nanokompozit filmlerin geçirgenlikleri ve kilin polimer içinde ne şekilde dağıldığının anlaşılması için UV spektrofotometre ile de optik geçirgenlik testleri yapılmıştır. Filmlerin sert ve kırılgan özelliğinin giderilmesi, elastikliklerinin arttırılması için yapılan gliserin ilavesinin optik geçirgenliği azaltması nedeniyle; filmlerde UV geçirgenliğinin engellenmesi için gliserin kullanılabileceği anlaşılmıştır. Nowadays, the physical and engineering properties of polymers are improved by additon of nanosize clay to the clay/polymer nanocomposite materials. Clay/polymer nanocomposites exhibit various superior properties such as high strength, high modulus, and a high distortion temperature, compared to the pristine polymer. Montmorillonite (Mt) is the most widely used layered silicate in polymer nanocomposites due to its higher ion exchange capacity, surface area, and adsorption capacity, moreover that is friendly of environment, natural abundant and economic. Mt is composed of silicate sheets of 1 nm thickness with adsorbed exchangeable cations. The intercalation with organic materials increases the spacing between the silicate sheets and even lead to the complete dissociation of the sheets to form a Mt/organic composite with a nanometer scale. These nanoparticles have high aspect ratios (length-todiameter (L/D) ratio for Mt clay ~ 220). Clay can be dispersed in polymeric matrix as conventional filler with aggregated particles, intercalated clay, ordered exfoliated nanocomposites, or disordered exfoliated nanocomposites. At very low loadings of nanoclay (~2-10 %), nanocomposites exhibit to increase in mechanical, thermal, electrical or barrier properties. Strong materials can be produced with inherent bioproperties (biocompatibility, biodegradability, antimicrobial) due to the completely biomolecular nature of the material. Biodegradable polymers which are provied from natural sources are desired polymers to make clay/polymer nanocomposite. Researches which were made to develope the properties of biopolymers are showed that the usage of clays, an inorganic material, as an additive gives positive effects. Physical and engineering properties of polymers can be improven by even a few amount of clay addition because of the crystal layer structure and characteristic properties of clays. The distribution of nano-size clay particles in polymers gets a strong interaction between clay and polymer that caused by superior properties clay/polymer nanocomposites. Chitosan is a biopolymer derived from chitin by N−deacylation. Chitin and chitosan are natural biodegradable and non-toxic linear heteropolysaccharides and waste products of the crab and shrimp industry. Chitosan is used in applications from health to agriculture to dyes for fabrics, because of its chemical and biological properties. There are even medical applications. The aim of this study, to improve the properties of the chitosan polymer, which has huge applications at medical and industrial fields, by adding clay particles. Clay particles were distributed homogenous in chitosan and suitable conditions for the best interaction of these two component are examined with using rheological, electrokinetical and morphological structure experiments. The clay samples were purified by using sedimentation, centrifuge, dialize, drying and grinding processes and called SMt. The purrified clay SMt and organoclay form of it, which was manifuctured by interaction of HDTABr surfactant with the aim of having optimum interaction between hydrophilic structured clay minerals and chitosan biopolymer were formed with chitosan. The micro structures of the composites were determined by using X-ray diffractometer (XRD) and transmission electron microscope (TEM) analysis. In addition, thermal properties of these samples were determined by using classical methods like differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Both rheological and electrokinetical properties of nanocomposite dispersions were obtaine and optical transparancy tests of nanocomposite films were experimented by using Ocean Optic HR 4000 UV/Visible spectrophotometer to determine light transmission of nanocomposite films beside how clay is distributed in polymer. The composite products were characterized by XRD, TEM to determine the microstructure, and DSC, TGA to find out the thermal properties. Besides, rheological and electrokinetic properties and optical transparancy of the nanocomposites were determined. We suggested that optical transparancy could help us to understand the distribution of the clay in polymer. The optical transparency tests was done and seen that the the transparancy of the films were decrease due to the aggregation of the particles. Also, glycerin which used to prepare the films caused to decrease the transparancy of the chitosan biopolymer, so it is determined that the films can be used as a UV light stopper materials.
Bibliography:TMUH
ISSN:1303-7021