Clinicophysiological and haemodynamic effects of fentanyl with xylazine, medetomidine and dexmedetomidine in isoflurane-anaesthetised water buffaloes (Bubalus bubalis) : original research

The present study was undertaken to investigate the sedative, analgesic and clinical effects of xylazine, medetomidine and dexmedetomidine with fentanyl as pre-anaesthetics in water buffaloes and to compare the dose-sparing effect of xylazine, medetomidine and dexmedetomidine on thiopental for induc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the South African Veterinary Association Vol. 84; no. 1; pp. 1 - 11
Main Authors: Kinjavdekar, Prakash, Singh, Jasmeet, Aithal, Hari P., Singh, Gyan D., Zama, Malik M.S., Tiwary, Ramesh
Format: Journal Article
Language:English
Published: AOSIS 01-01-2013
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study was undertaken to investigate the sedative, analgesic and clinical effects of xylazine, medetomidine and dexmedetomidine with fentanyl as pre-anaesthetics in water buffaloes and to compare the dose-sparing effect of xylazine, medetomidine and dexmedetomidine on thiopental for induction and isoflurane for maintenance of anaesthesia in water buffaloes. Six male water buffaloes randomly received intravenous fentanyl (5.0 μg/kg body weight) and xylazine (0.05 mg/kg body weight), fentanyl (5.0 μg/kg body weight) and medetomidine (2.5 μg/kg body weight), fentanyl (5.0 μg/kg body weight) and dexmedetomidine (5.0 μg/kg body weight) at weekly intervals in groups I1, I2 and I3, respectively. After 15 min, the animals were restrained in right lateral recumbency and anaesthesia was induced by 5% thiopental sodium administered intravenously. The intubated animal was connected to the large animal anaesthesia machine and isoflurane in 100% oxygen (5 L/min) was insufflated for 60 min. The treatments were compared by clinicophysiological, haematobiochemical and haemodynamic parameters. Fentanyl-medetomidine and fentanyldexmedetomidine produced more cardiovascular depression during the pre-anaesthetic period but less depression of cardio-respiratory dynamics in the post induction and maintenance period. Quicker recovery was recorded in I2 and I3 groups. A lower dose of thiopental was required in group I3 (4.33 mg/kg ± 0.66 mg/kg) than in groups I2 (4.41 mg/kg ± 0.98 mg/kg) and I1 (4.83 mg/kg ± 0.79 mg/kg). The dose of isoflurane was less in group I3 (45.50 mL ± 5.45 mL) than in group I1 and I2 (48.66 mL ± 5.10 mL and 48.00 mL ± 6.38 mL). Better anaesthesia was recorded with fentanyl-dexmedetomidine-thiopental-isoflurane (group I3) than with fentanyl-medetomidine-thiopental-isoflurane (group I2) and fentanyl-xylazinethiopental-isoflurane (group I1). Fentanyl-medetomidine and fentanyl-dexmedetomidine were better pre-anaesthetic agents in comparison to fentanyl-xylazine for thiopental and isoflurane anaesthesia. Fentanyl-dexmedetomidine-thiopental-isoflurane and fentanyl-medetomidinethiopental-isoflurane produced effective surgical anaesthesia and were found to be safe, as cardio-pulmonary functions were well preserved during maintenance anaesthesia with no deleterious effect on vital organ functions in water buffaloes.
ISSN:1019-9128
2224-9435
DOI:10.4102/jsava.v84i1.67