documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=1$$\end{document}N=1 super topological recursion
We introduce the notion of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=1$$\end{document} N = 1 abst...
Saved in:
Published in: | Letters in mathematical physics Vol. 111; no. 6 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
01-01-2021
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce the notion of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {N}}=1$$\end{document}
N
=
1
abstract super loop equations and provide two equivalent ways of solving them. The first approach is a recursive formalism that can be thought of as a supersymmetric generalization of the Eynard–Orantin topological recursion, based on the geometry of a local super spectral curve. The second approach is based on the framework of super Airy structures. The resulting recursive formalism can be applied to compute correlation functions for a variety of examples related to 2d supergravity. |
---|---|
ISSN: | 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-021-01479-x |