Origin of enhanced chemical precompression in cerium hydride \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CeH}_{{9}}$$\end{document}CeH9

The rare-earth metal hydrides with clathrate structures have been highly attractive because of their promising high- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setl...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 10
Main Authors: Jeon, Hyunsoo, Wang, Chongze, Yi, Seho, Cho, Jun-Hyung
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 09-10-2020
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rare-earth metal hydrides with clathrate structures have been highly attractive because of their promising high- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\rm{c}}$$\end{document} T c superconductivity at high pressure. Recently, cerium hydride \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CeH}_9$$\end{document} CeH 9 composed of Ce-encapsulated clathrate H cages was synthesized at much lower pressures of 80–100 GPa, compared to other experimentally synthesized rare-earth hydrides such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {LaH}_{{10}}$$\end{document} LaH 10 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {YH}_6$$\end{document} YH 6 . Based on density-functional theory calculations, we find that the Ce 5 p semicore and 4 f /5 d valence states strongly hybridize with the H 1 s state, while a transfer of electrons occurs from Ce to H atoms. Further, we reveal that the delocalized nature of Ce 4 f electrons plays an important role in the chemical precompression of clathrate H cages. Our findings not only suggest that the bonding nature between the Ce atoms and H cages is characterized as a mixture of ionic and covalent, but also have important implications for understanding the origin of enhanced chemical precompression that results in the lower pressures required for the synthesis of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CeH}_9$$\end{document} CeH 9 .
ISSN:2045-2322
DOI:10.1038/s41598-020-73665-1