Room-temperature Tamm-plasmon exciton-polaritons with a WSe 2 monolayer

Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. T...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 7; p. 13328
Main Authors: Lundt, Nils, Klembt, Sebastian, Cherotchenko, Evgeniia, Betzold, Simon, Iff, Oliver, Nalitov, Anton V, Klaas, Martin, Dietrich, Christof P, Kavokin, Alexey V, Höfling, Sven, Schneider, Christian
Format: Journal Article
Language:English
Published: England 31-10-2016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe , hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy-momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons.
ISSN:2041-1723