Directional Ring Translocation in a pH- and Redox-Driven Tristable 2Rotaxane

We describe the synthesis and characterization of a [2]rotaxane comprising a dibenzo-24-crown-8 (DB24C8) macrocyclic component and a thread containing three recognition sites: ammonium (AmH+), bipyridinium (Bpy2+) and triazolium (Trz+). AmH+ and Bpy2+ are responsive to fully orthogonal stimuli, pH a...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition p. e202414609
Main Authors: Andreoni, Leonardo, Groppi, Jessica, Seven, Özlem, Baroncini, Massimo, Credi, Alberto, Silvi, Serena
Format: Journal Article
Language:English
Published: 20-09-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe the synthesis and characterization of a [2]rotaxane comprising a dibenzo-24-crown-8 (DB24C8) macrocyclic component and a thread containing three recognition sites: ammonium (AmH+), bipyridinium (Bpy2+) and triazolium (Trz+). AmH+ and Bpy2+ are responsive to fully orthogonal stimuli, pH and electrochemical, which allows to precisely control the directional translation of the macrocycle along the axle. A better understanding of the processes driving the operation of the system was obtained thanks to an in-depth thermodynamic characterization. Orthogonal stimuli responsive tristable rotaxanes represent the starting point for the creation of linear motors and the development of molecular logic gates.We describe the synthesis and characterization of a [2]rotaxane comprising a dibenzo-24-crown-8 (DB24C8) macrocyclic component and a thread containing three recognition sites: ammonium (AmH+), bipyridinium (Bpy2+) and triazolium (Trz+). AmH+ and Bpy2+ are responsive to fully orthogonal stimuli, pH and electrochemical, which allows to precisely control the directional translation of the macrocycle along the axle. A better understanding of the processes driving the operation of the system was obtained thanks to an in-depth thermodynamic characterization. Orthogonal stimuli responsive tristable rotaxanes represent the starting point for the creation of linear motors and the development of molecular logic gates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Feature-2
ISSN:1521-3773
1521-3773
DOI:10.1002/anie.202414609