On the asymptotic stability of x sub(n) sub(+) sub(1)=(a+x sub(n)x sub(n) sub(-) sub(k))/(x sub(n)+x sub(n) sub(-) sub(k))

We prove that the equilibrium solution of the rational difference equation x sub(n) sub(+) sub(1)=a+x sub(n)x sub(n) sub(-) sub(k)x sub(n)+x sub(n) sub(-) sub(k),n=0,1,2,... where k is a nonnegative integer, a>=0, and x sub(-) sub(k),...,x sub(0)>0, is globally asymptotically stable.

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) Vol. 56; no. 5; pp. 1172 - 1175
Main Authors: Abu-Saris, R, Cinar, C, Yalcinkaya, I
Format: Journal Article
Language:English
Published: 01-09-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove that the equilibrium solution of the rational difference equation x sub(n) sub(+) sub(1)=a+x sub(n)x sub(n) sub(-) sub(k)x sub(n)+x sub(n) sub(-) sub(k),n=0,1,2,... where k is a nonnegative integer, a>=0, and x sub(-) sub(k),...,x sub(0)>0, is globally asymptotically stable.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Feature-1
ISSN:0898-1221
DOI:10.1016/j.camwa.2008.02.028