On the asymptotic stability of x sub(n) sub(+) sub(1)=(a+x sub(n)x sub(n) sub(-) sub(k))/(x sub(n)+x sub(n) sub(-) sub(k))
We prove that the equilibrium solution of the rational difference equation x sub(n) sub(+) sub(1)=a+x sub(n)x sub(n) sub(-) sub(k)x sub(n)+x sub(n) sub(-) sub(k),n=0,1,2,... where k is a nonnegative integer, a>=0, and x sub(-) sub(k),...,x sub(0)>0, is globally asymptotically stable.
Saved in:
Published in: | Computers & mathematics with applications (1987) Vol. 56; no. 5; pp. 1172 - 1175 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
01-09-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the equilibrium solution of the rational difference equation x sub(n) sub(+) sub(1)=a+x sub(n)x sub(n) sub(-) sub(k)x sub(n)+x sub(n) sub(-) sub(k),n=0,1,2,... where k is a nonnegative integer, a>=0, and x sub(-) sub(k),...,x sub(0)>0, is globally asymptotically stable. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 23 ObjectType-Feature-1 |
ISSN: | 0898-1221 |
DOI: | 10.1016/j.camwa.2008.02.028 |