Virial coefficient calculations for an anyon gas and a quon gas, and an anyonic quon gas
The second virial coefficient for an anyon gas in the presence of a magnetic field is calculated within the Schrodinger formulation and path integral formulation of quantum mechanics. A winding number expansion of the canonical partition functions reveals that the deviation in the pressure of such a...
Saved in:
Main Author: | |
---|---|
Format: | Dissertation |
Language: | English |
Published: |
ProQuest Dissertations & Theses
01-01-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The second virial coefficient for an anyon gas in the presence of a magnetic field is calculated within the Schrodinger formulation and path integral formulation of quantum mechanics. A winding number expansion of the canonical partition functions reveals that the deviation in the pressure of such a gas from its classical value stems from the non-zero relative winding numbers. A model quon Hamiltonian is proposed which simulates an anyon gas up to the third virial coefficient. A unified treatment of a free Bose-Einstein gas and a free Fermi-Dirac gas is achieved within this framework. |
---|---|
ISBN: | 9781109004830 1109004834 |