Control and Visual Navigation for Unmanned Underwater Vehicles

Control and navigation systems are key for any autonomous robot. Due to environmental disturbances, model uncertainties and nonlinear dynamic systems, reliable functional control is essential and improvements in the controller design can significantly benefit the overall performance of Unmanned Unde...

Full description

Saved in:
Bibliographic Details
Main Author: Xu, Zhizun
Format: Dissertation
Language:English
Published: ProQuest Dissertations & Theses 01-01-2021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Control and navigation systems are key for any autonomous robot. Due to environmental disturbances, model uncertainties and nonlinear dynamic systems, reliable functional control is essential and improvements in the controller design can significantly benefit the overall performance of Unmanned Underwater Vehicles (UUVs). Analogously, due to electromagnetic attenuation in underwater environments, the navigation of UUVs is always a challenging problem. In this thesis, control and navigation systems for UUVs are investigated. In the control field, four different control strategies have been considered: Proportional-Integral-Derivative Control (PID), Improved Sliding Mode Control (SMC), Backstepping Control (BC) and customised Fuzzy Logic Control (FLC). The performances of these four controllers were initially simulated and subsequently evaluated by practical experiments in different conditions using an underwater vehicle in a tank. The results show that the improved SMC is more robust than the others with small settling time, overshoot, and error. In the navigation field, three underwater visual navigation systems have been developed in the thesis: ArUco Underwater Navigation systems, a novel Integrated Visual Odometry with Monocular camera (IVO-M), and a novel Integrated Visual Odometry with Stereo camera (IVO-S). Compared with conventional underwater navigation, these methods are relatively low-cost solutions and unlike other visual or inertial-visual navigation methods, they are able to work well in an underwater sparse-feature environment. The results show the following: the ArUco underwater navigation system does not suffer from cumulative error, but some segments in the estimated trajectory are not consistent; IVO-M suffers from cumulative error (error ratio is about 3 - 4%) and is limited by the assumption that the "seabed is locally flat"; IVO-S suffers from small cumulative errors (error ratio is less than 2%). Overall, this thesis contributes to the control and navigation systems of UUVs, presenting the comparison between controllers, the improved SMC, and low-cost underwater visual navigation methods.