Kompaktní Mikroskopie se Strukturním Osvětlením a Hodnocení Výkonu v Superrezolučním Zobrazování ŽIvých Buněk

Structured illumination microscopy (SIM) is one of the most common means of achieving a spatial resolution beyond the diffraction limit in fluorescence microscopy. The superresolution SIM doubles the spatial resolution of optical microscopy, which is sufficient to visualize cellular organelles and t...

Full description

Saved in:
Bibliographic Details
Main Author: Pospíšil, Jakub
Format: Dissertation
Language:Czech
Published: ProQuest Dissertations & Theses 01-01-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structured illumination microscopy (SIM) is one of the most common means of achieving a spatial resolution beyond the diffraction limit in fluorescence microscopy. The superresolution SIM doubles the spatial resolution of optical microscopy, which is sufficient to visualize cellular organelles and their substructures at _100 nm. Current commercially available SR-SIM microscopes are often unaffordable to many biological laboratories and are relatively bulky systems covering more than one optical table. The high demand for inexpensive compact SR-SIM microscopes leads to the development of the custom-built systems using alternative ways of generating the striped illumination pattern essential for the SIM reconstruction, e.g., using a digital micromirror device (DMD), a ferroelectric liquid-crystal-on-silicon (FLCOS) microdisplay, or fiber optics. This thesis details development of a novel custom-built structured illumination microscopy system based on all-fiber optic components (fiberSIM). The proposed SIM system provides promising super-resolution results confirming the concept and indicates that fiberSIM could become the basis of a versatile “Plug&Play” illumination module with the capability of turning any conventional microscope into the SR-SIM microscope. Furthermore, five freely available SIM datasets with complete documentation are introduced. This SIM data provides a benchmark essential for the further development of reconstruction algorithms or analysis tools in SR-SIM microscopy. The final step in the development of a custom-built SR microscope is the quantitative evaluation of the resolution gain. In this thesis, a recently developed resolution estimation technique based on circular average power spectral density (PSDca) analysis is introduced. The proposed method allows to determine the resolution limit from a single image, which is suitable for the analysis of video sequences of a living cell. Furthermore, the most common conventional resolution assessment techniques that are able to measure the actual resolution limits of a microscope are discussed. The combination of a compact low-cost SIM illumination unit with open-source reconstruction and analysis algorithms makes SR-SIM available to any biological laboratory.
ISBN:9798802730119