Effect of glycosylation on the biochemical properties of [beta]-xylosidases from Aspergillus versicolor
Aspergillus versicolor grown on xylan or xylose produces two β-xylosidases with differences in biochemical properties and degree of glycosylation. We investigated the alterations in the biochemical properties of these β-xylosidases after deglycosylation with Endo-H or PNGase F. After deglycosylation...
Saved in:
Published in: | The journal of microbiology Vol. 47; no. 3; p. 270 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Seoul
Springer Nature B.V
01-06-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aspergillus versicolor grown on xylan or xylose produces two β-xylosidases with differences in biochemical properties and degree of glycosylation. We investigated the alterations in the biochemical properties of these β-xylosidases after deglycosylation with Endo-H or PNGase F. After deglycosylation, both enzymes migrated faster in PAGE or SDS-PAGE exhibiting the same Rf. Temperature optimum of xylan-induced and xylose-induced β-xylosidases was 45°C and 40°C, respectively, and 35°C after deglycosylation. The xylan-induced enzyme was more active at acidic pH. After deglycosylation, both enzymes had the same pH optimum of 6.0. Thermal resistance at 55°C showed half-life of 15 min and 9 min for xylose- and xylan-induced enzymes, respectively. After deglycosylation, both enzymes exhibited half-lives of 7.5 min. Native enzymes exhibited different responses to ions, while deglycosylated enzymes exhibited identical responses. Limited proteolysis yielded similar polypeptide profiles for the deglycosylated enzymes, suggesting a common polypeptide core with differential glycosylation apparently responsible for their biochemical and biophysical differences. |
---|---|
ISSN: | 1225-8873 1976-3794 |
DOI: | 10.1007/s12275-008-0286-9 |