Amplitude analysis of the B s 0 → K ∗ 0 K ¯ ∗ 0 \[ {B}_{(s)}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \] decays and measurement of the branching fraction of the B 0 → K ∗ 0 K ¯ ∗ 0 \[ {B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \] decay
The B0→K∗0K¯∗0\[ {B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \] and Bs0→K∗0K¯∗0\[ {B}_s^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \] decays are studied using proton-proton collision data corresponding to an integrated luminosity of 3 fb−1. An untagged and timeintegrated amplitude analysis of B(s)0 →...
Saved in:
Published in: | The journal of high energy physics Vol. 2019; no. 7; pp. 1 - 31 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Heidelberg
Springer Nature B.V
01-07-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The B0→K∗0K¯∗0\[ {B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \] and Bs0→K∗0K¯∗0\[ {B}_s^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \] decays are studied using proton-proton collision data corresponding to an integrated luminosity of 3 fb−1. An untagged and timeintegrated amplitude analysis of B(s)0 → (K+π−)(K−π+) decays in two-body invariant mass regions of 150 MeV/c2 around the K∗0 mass is performed. A stronger longitudinal polarisation fraction in the B0→K∗0K¯∗0\[ {B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \] decay, fL = 0.724 ± 0.051 (stat) ± 0.016 (syst), is observed as compared to fL = 0.240 ± 0.031 (stat) ± 0.025 (syst) in the Bs0→K∗0K¯∗0\[ {B}_s^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} \] decay. The ratio of branching fractions of the two decays is measured and used to determine ℬB0→K∗0K¯∗0=8.0±0.9stat±0.4syst×10−7\[ \mathrm{\mathcal{B}}\left({B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0}\right)=\left(8.0\pm 0.9\left(\mathrm{stat}\right)\pm 0.4\left(\mathrm{syst}\right)\right)\times {10}^{-7} \]. |
---|---|
ISSN: | 1029-8479 |
DOI: | 10.1007/JHEP07(2019)032 |