Effect of supports over Pd/Fe^sub 2^O^sub 3^ on CO oxidation at low temperature
Pd/Fe2O3 catalysts were prepared by deposition-precipitation method and investigated for CO oxidation. Compared with Pd/α-Fe2O3, Pd/γ-Fe2O3 exhibited the higher CO oxidation activity, and CO completely oxidation temperature was obtained at 0 °C. CO oxidation occurred through the dual sites mechanism...
Saved in:
Published in: | Fuel processing technology Vol. 160; p. 152 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier Science Ltd
01-06-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pd/Fe2O3 catalysts were prepared by deposition-precipitation method and investigated for CO oxidation. Compared with Pd/α-Fe2O3, Pd/γ-Fe2O3 exhibited the higher CO oxidation activity, and CO completely oxidation temperature was obtained at 0 °C. CO oxidation occurred through the dual sites mechanism, namely CO adsorbed on Pd species and O activation on the support. The close contact between Pd and γ-Fe2O3 enhanced the redox recycle between Fe3 + and Fe2 + species, which played a decisive role in oxygen activation. The excellent performance in oxygen activation efficiently accelerated the rate-determining step in CO oxidation. The accumulated carbonate and hydrocarbonate species on α-Fe2O3 blocked the oxygen activation which resulted in the low activity of Pd/α-Fe2O3 in CO oxidation. |
---|---|
ISSN: | 0378-3820 1873-7188 |