IL-13R[alpha]2 and IL-10 coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice
Development of persistent Th2 responses in asthma and chronic helminth infections are a major health concern. IL-10 has been identified as a critical regulator of Th2 immunity, but mechanisms for controlling Th2 effector function remain unclear. IL-10 also has paradoxical effects on Th2-associated p...
Saved in:
Published in: | The Journal of clinical investigation Vol. 117; no. 10; p. 2941 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Ann Arbor
American Society for Clinical Investigation
01-10-2007
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Development of persistent Th2 responses in asthma and chronic helminth infections are a major health concern. IL-10 has been identified as a critical regulator of Th2 immunity, but mechanisms for controlling Th2 effector function remain unclear. IL-10 also has paradoxical effects on Th2-associated pathology, with IL-10 deficiency resulting in increased Th2-driven inflammation but also reduced airway hyperreactivity (AHR), mucus hypersecretion, and fibrosis. We demonstrate that increased IL-13 receptor alpha 2 (IL-13Ralpha2) expression is responsible for the reduced AHR, mucus production, and fibrosis in BALB/c IL-10(-/-) mice. Using models of allergic asthma and chronic helminth infection, we demonstrate that IL-10 and IL-13Ralpha2 coordinately suppress Th2-mediated inflammation and pathology, respectively. Although IL-10 was identified as the dominant antiinflammatory mediator, studies with double IL-10/IL-13Ralpha2-deficient mice illustrate an indispensable role for IL-13Ralpha2 in the suppression of AHR, mucus production, and fibrosis. Thus, IL-10 and IL-13Ralpha2 are both required to control chronic Th2-driven pathological responses. |
---|---|
ISSN: | 0021-9738 1558-8238 |