Selective hydrodesulfurization of FCC naphtha with supported MoS{sub 2} catalysts : the role of cobalt

The catalytic activity and selectivity for hydrodesulfurization (HDS) and olefin hydrogenation of FCC naphtha have been determined for MoS2 (no Co) catalysts on different supports and for a commercial CoMo/alumina HDS catalyst both with and without the addition of alkali. For MoS2 catalysts, the spe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of catalysis Vol. 193; no. 1 ; Jul. 2000
Main Authors: Marshall, C. L., Kropf, A. J., Miler, J. T., Reagan, W. J., Kaduk, J. A., Chemical Engineering, BP Amoco Research Center
Format: Journal Article
Language:English
Published: United States 01-07-2000
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The catalytic activity and selectivity for hydrodesulfurization (HDS) and olefin hydrogenation of FCC naphtha have been determined for MoS2 (no Co) catalysts on different supports and for a commercial CoMo/alumina HDS catalyst both with and without the addition of alkali. For MoS2 catalysts, the specific HDS activity is higher on silica than alumina, while addition of Cs resulted in no change in the activity. The differences in activity, however, are relatively small, a factor of less than two. EXAFS and XRD structural analysis indicate that small MoS2 particles are present on all catalysts. The differences in rate are not due to differences in particle size, dispersion, or support physical properties, but are likely due to the modification of catalytic properties by an interaction with the support. While there is a small influence on the rate, the composition of the support, or modification by Cs, has no effect on the HDSlolefin hydrogenation selectivity. The olefin hydrogenation conversion increases linearly with HDS conversion, and at high HDS conversion, few olefins remain in the FCC naphtha. Similar to the effect for Cs promotion of MoS2 on alumina, the addition of K to sulfided CoMo/alumina had little affect on the activity or selectivity for HDS and olefin hydrogenation. Unlike MoS2 catalysts, however, with sulfided CoMo at less than about 85% HDS conversion, the rate of olefin hydrogenation is low, but it increases rapidly as the sulfur in the naphtha drops below about 300 ppm. Selective HDS of FCC naphtha appears to correlate primarily to the formation of the CoMoS phase, rather than to the basic nature of the support. It is proposed that the enhanced olefin hydrogenation selectivity of CoMo catalysts is due to the competitive adsorption of sulfur compounds, which inhibit adsorption and saturation of olefins in the naphtha.
Bibliography:ANL/CMT/JA-39331
USDOE Office of Science (SC)
DE-AC02-06CH11357
ISSN:0021-9517
1090-2694