Stabilization of NbTe3, VTe3, and TiTe3 via Nanotube Encapsulation
The structure of MX3 transition metal trichalcogenides (TMTs, with M a transition metal and X a chalcogen) is typified by one-dimensional (1D) chains weakly bound together via van der Waals interactions. This structural motif is common across a range of M and X atoms (e.g. NbSe3, HfTe3, TaS3), but n...
Saved in:
Published in: | Journal of the American Chemical Society Vol. 143; no. 12 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society (ACS)
01-12-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The structure of MX3 transition metal trichalcogenides (TMTs, with M a transition metal and X a chalcogen) is typified by one-dimensional (1D) chains weakly bound together via van der Waals interactions. This structural motif is common across a range of M and X atoms (e.g. NbSe3, HfTe3, TaS3), but not all M and X combinations are stable. We report here that three new members of the MX3 family which are not stable in bulk, specifically NbTe3, VTe3, and TiTe3, can be synthesized in the few- to single-chain limit via nano-confined growth within the stabilizing cavity of multi-walled carbon nanotubes. Transmission electron microscopy (TEM) and atomic-resolution scanning transmission electron microscopy (STEM) reveal the chain-like nature and the detailed atomic structure. The synthesized materials exhibit behavior unique to few-chain quasi-1D structures, such as multi-chain spiraling and a trigonal anti-prismatic rocking distortion in the single-chain limit. Density functional theory (DFT) calculations provide insight into the crystal structure and stability of the materials, as well as their electronic structure. |
---|---|
Bibliography: | AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ISSN: | 0002-7863 1520-5126 |