Single-Shot Femtosecond X-ray Diffraction from Randomly Oriented Ellipsoidal Nanoparticles
Coherent diffractive imaging of single particles using the single-shot 'diffract and destroy' approach with an x-ray free electron laser (FEL) was recently demonstrated. A high-resolution low-noise coherent diffraction pattern, representative of the object before it turns into a plasma and...
Saved in:
Published in: | Physical review special topics. PRST-AB. Accelerators and beams Vol. 13; no. 9 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
18-04-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coherent diffractive imaging of single particles using the single-shot 'diffract and destroy' approach with an x-ray free electron laser (FEL) was recently demonstrated. A high-resolution low-noise coherent diffraction pattern, representative of the object before it turns into a plasma and explodes, results from the interaction of the FEL with the particle. Iterative phase retrieval algorithms are used to reconstruct two-dimensional projection images of the object from the recorded intensities alone. Here we describe the first single-shot diffraction data set that mimics the data proposed for obtaining 3D structure from identical particles. Ellipsoidal iron oxide nanoparticles (250 nm x 50 nm) were aerosolized and injected through an aerodynamic lens stack into a soft x-ray FEL. Particle orientation was not controlled with this injection method. We observed that, at the instant the x-ray pulse interacts with the particle, a snapshot of the particle's orientation is encoded in the diffraction pattern. The results give credence to one of the technical concepts of imaging individual nanometer and subnanometer-sized objects such as single molecules or larger clusters of molecules using hard x-ray FELs and will be used to help develop robust algorithms for determining particle orientations and 3D structure. |
---|---|
Bibliography: | USDOE AC02-76SF00515 SLAC-REPRINT-2012-035 |
ISSN: | 1098-4402 1098-4402 |