Form-finding analysis of suspension bridges using an explicit Iterative approach
This paper presents an explicit analytical iteration method for form-finding analysis of suspension bridges. By extending the conventional analytical form-finding method predicated on the elastic catenary theory, two nonlinear governing equations are derived for calculating the accurate unstrained l...
Saved in:
Published in: | Structural engineering and mechanics Vol. 62; no. 1; pp. 85 - 95 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | Korean |
Published: |
2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an explicit analytical iteration method for form-finding analysis of suspension bridges. By extending the conventional analytical form-finding method predicated on the elastic catenary theory, two nonlinear governing equations are derived for calculating the accurate unstrained lengths of the entire cable systems both the main cable and the hangers. And for the gradient-based iteration method, the derivation of explicit calculation for the Jacobian matrix while solving the nonlinear governing equation enhances the computational efficiency. The results from sensitivity analysis show well performance of the explicit Jacobian matrix compared with the traditional finite difference method. According to two numerical examples of long span suspension bridges studied, the proposed method is also compared with those reported approaches or the fundamental criterions in suspension bridge structural analysis, which eventually confirms the accuracy and efficiency of the proposed approach. |
---|---|
ISSN: | 1225-4568 1598-6217 |