Implications of paraquat and hydrogen peroxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thaliana calmodulin mutants

Arabidopsis mutants with T-DNA insertion in seven calmodulin genes (CAM) were used to determine the specific role of CAM in the tolerance of plants to oxidative stress induced by paraquat and hydrogen peroxide ($H_2O_2$) treatments. Arabidopsis calmodulin mutants (cam) were screened for seedling gro...

Full description

Saved in:
Bibliographic Details
Published in:Plant biotechnology reports Vol. 5; no. 3; pp. 225 - 234
Main Authors: Al-Quraan, Nisreen A, Locy, Robert D, Singh, Narendra K
Format: Journal Article
Language:Korean
Published: 2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Arabidopsis mutants with T-DNA insertion in seven calmodulin genes (CAM) were used to determine the specific role of CAM in the tolerance of plants to oxidative stress induced by paraquat and hydrogen peroxide ($H_2O_2$) treatments. Arabidopsis calmodulin mutants (cam) were screened for seedling growth, seed germination, induced oxidative damage, and levels of ${\gamma}$-aminobutyric acid (GABA) shunt metabolites. Only the cam5-4 and cam6-1 mutants exhibited an increased sensitivity to paraquat and $H_2O_2$ during seed germination and seedling growth. In response to treatments with $3{\mu}M$ paraquat and 1 mM $H_2O_2$, only the cam5-4, cam6-1 mutants showed significant changes in malonaldehyde (MDA) levels in root and shoot tissues, with highly increased levels of MDA. In terms of the GABA shunt metabolites, GABA was significantly elevated in root and shoot tissues in response to the paraquat treatments in comparison to alanine and glutamate, while the levels of all shunt metabolites increased in root tissue but not in the shoot tissue following the $H_2O_2$ treatments. GABA, alanine and glutamate levels were significantly increased in root and shoot of the cam1, cam4, cam5-4, and cam6-1 mutants in response to paraquat (0.5, 1 and $3{\mu}M$), while they were increased only in the root tissue of the cam1, cam4, cam5-4, and cam6-1 mutants in response to $H_2O_2$ (200 and $500{\mu}M$, 1 mM). These data show that the cam5-4 and cam6-1 mutants were sensitive to the induced oxidative stress treatments in terms of seed germination, seedling growth, and oxidative damage. The accumulation of GABA shunt metabolites as a consequence of the induced oxidative stress treatments (paraquat and $H_2O_2$ treatments) suggests that the GABA shunt pathway and the accumulation of GABA metabolites may contribute in antioxidant machinery associated with reactive oxygen species and in the acquisition of tolerance in response to induced oxidative stress in Arabidopsis seedlings.
Bibliography:KISTI1.1003/JNL.JAKO201121537470584
ISSN:1863-5466
1863-5474