Analysis of the Fractal Dimension, Ib-value/I, Slip Ratio, and Decay Rate of Aftershock Seismicity Following the 6 February 2023 Türkiye Earthquakes

On 6 February 2023, Türkiye experienced a pair of consecutive earthquakes with magnitudes of Mw 7.8 and 7.5, and accompanied by an intense aftershock sequence. These seismic events were particularly impactful on the segments of the East Anatolian Fault Zone (EAFZ), causing extensive damage to both h...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional Vol. 8; no. 5
Main Authors: Ali, Sherif M, Abdelrahman, Kamal
Format: Journal Article
Language:English
Published: MDPI AG 01-05-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:On 6 February 2023, Türkiye experienced a pair of consecutive earthquakes with magnitudes of Mw 7.8 and 7.5, and accompanied by an intense aftershock sequence. These seismic events were particularly impactful on the segments of the East Anatolian Fault Zone (EAFZ), causing extensive damage to both human life and urban centers in Türkiye and Syria. This study explores the analysis of a dataset spanning almost one year following the Turkiye mainshocks, including 471 events with a magnitude of completeness (Mc) ≥ 4.4. We employed the maximum likelihood approach to estimate the b-value and Omori-Utsu parameters (K, c, and p-values). The estimated b-value is 1.21 ± 0.1, indicating that the mainshocks occurred in a region characterized by elevated stress levels, leading to a sequence of aftershocks of larger magnitudes due to notable irregularities in the rupture zone. The aftershock decay rate (p-value = 1.1 ± 0.04) indicates a rapid decrease in stress levels following the main shocks. However, the c-value of 0.204 ± 0.058 would indicate a relatively moderate or low initial productivity of aftershocks. Furthermore, the k-value of 76.75 ± 8.84 suggests that the decay of aftershock activity commenced within a range of approximately 68 to 86 days following the mainshocks. The fractal dimension (Dc) was assessed using the correlation integral method, yielding a value of 0.99 ± 0.03. This implies a tendency toward clustering in the aftershock seismicity and a linear configuration of the epicenters. The slip ratio during the aftershock activity was determined to be 0.75, signifying that 75% of the total slip occurred in the primary rupture, with the remaining fraction distributed among secondary faults. The methodologies and insights acquired in this research can be extended to assist in forecasting aftershock occurrences for future earthquakes, thus offering crucial data for future risk assessment.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract8050252