An efficient shrunken estimators for the mean of normal population with known variance

This article considers a shrunken estimator of Al-Hermyari and Al-Goburi (١) to estimate the mean (زو of a Donnai distribution N(0. a2) with known variance (a2), when a guess value (0°) is available about the mean (9) as an initial estimate. 'Phis estimator is shown to be more efficient than th...

Full description

Saved in:
Bibliographic Details
Published in:Ibn Al-Haitham Journal for Pure and Applied Sciences Vol. 21; no. 3; pp. 159 - 165
Main Author: al-Jabburi, Abbas Najm Salman
Format: Journal Article
Language:Arabic
English
Published: بغداد، العراق جامعة بغداد، كلية التربية ابن الهيثم 2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article considers a shrunken estimator of Al-Hermyari and Al-Goburi (١) to estimate the mean (زو of a Donnai distribution N(0. a2) with known variance (a2), when a guess value (0°) is available about the mean (9) as an initial estimate. 'Phis estimator is shown to be more efficient than the classical estimators especially when ؛ وs close to 0». General expressions for bias and MSE of considered estimator are given, W'ith some examples. Numerical results, comparisons and conclusions are reported. This article considers a shrunken estimator of Al-Hermyari and Al-Goburi (١) to estimate the mean (زو of a Donnai distribution N(0. a2) with known variance (a2), when a guess value (0°) is available about the mean (9) as an initial estimate. 'Phis estimator is shown to be more efficient than the classical estimators especially when s close to 0 ». General expressions for bias and MSE of considered estimator are given, W'ith some examples. Numerical results, comparisons and conclusions are reported.
ISSN:1609-4042
2521-3407