Investigation of Tunneling Between the Edge States of Phosphorene Nanoribbon with Zigzag Edge

In this paper, the transport properties of a phosphorene nanoribbon with zigzag edges are investigated. Although phosphorene is a two-dimensional structure with gaps, each zigzag edge of phosphorene nanoribbon acts like a one-dimensional quantum wire, so a nanoribbon with two edges is similar to two...

Full description

Saved in:
Bibliographic Details
Published in:Fīzīk-i kārburdī Īrān (Online) Vol. 14; no. 3; pp. 53 - 64
Main Authors: Mahdieh Hosseinnakhaei, Mohsen Daeimohammad, Morteza Soltani, Mina Neqabi, Gholamreza Rashedi
Format: Journal Article
Language:Persian
Published: Alzahra University 01-09-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the transport properties of a phosphorene nanoribbon with zigzag edges are investigated. Although phosphorene is a two-dimensional structure with gaps, each zigzag edge of phosphorene nanoribbon acts like a one-dimensional quantum wire, so a nanoribbon with two edges is similar to two parallel quantum wires. We also show that by adding an impurity line between the upper and lower edges, we can create an impurity strip that can connect the upper edge to the lower edge. In other words, different inputs can be coupled to different outputs. To calculate coupling coefficients between inputs and outputs, we use the Lippmann-Schwinger formulation. The final results show that depending on the energy of the input state and the corresponding standing wave in the impurity band, the phenomenon of resonance or anti-resonance can be created in the dispersion between inputs and outputs. Besides the theoretical aspect of the proposed scheme presented in this article, it can be applied to make nanoswitches in practice.
ISSN:2783-1043
2783-1051
DOI:10.22051/ijap.2024.45541.1365