Determining Thermal Properties of Beech and Fir Wood Samples in Longitudinal Direction via Modified Transient Plane Source Method
The increasing use of wood leads to the need for a better understanding of its thermal properties with the aim of quantitatively identifying the exchange of thermal energy between wood and the surrounding solar radiation as precisely as possible. Reliable and rapid measurement of thermal conductivit...
Saved in:
Published in: | Bioresources Vol. 19; no. 3; pp. 4104 - 4119 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
North Carolina State University
01-05-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The increasing use of wood leads to the need for a better understanding of its thermal properties with the aim of quantitatively identifying the exchange of thermal energy between wood and the surrounding solar radiation as precisely as possible. Reliable and rapid measurement of thermal conductivity is one of the most important current industrial requirements. The aim of this study is to examine the validity of using the modified transient plane source method (MTPS), which uses the principle of one-sided heating of the sample, and is defined by the ASTM D7984-21 (2021) standard, for determining the thermal conductivity of complex biocomposite composite materials such as wood. The analysis of the available literature shows a lack of data on the thermal conductivity of the type of wood originating in Croatia. In this study, the thermal conductivities of beech and fir wood samples in the longitudinal direction was determined by the MTPS method depending on the temperature and moisture content in the samples. Measurements were made on samples with a moisture content of 0%, 10%, and 20% in the temperature range from 20 to 80 °C. |
---|---|
ISSN: | 1930-2126 |