Determinação de amido e carboidrato em folhas de mangueira com o uso espectroscopia Vis-NIR

Mango production presents challenges, such as the maturation of the mango branches, which, combined with good nutrition and biochemicals involved in this process, such as carbohydrate and starch favor the development of the plant. Therefore, the use of non-destructive, fast techniques to determine t...

Full description

Saved in:
Bibliographic Details
Published in:Temas agrarios (Montería, Córdoba, Colombia) Vol. 27; no. 2; pp. 397 - 410
Main Authors: Alves Santana, Elisson, Dos Santos Costa, Daniel, Francismar de Medeiros, Jose
Format: Journal Article
Language:Spanish
Published: 30-05-2023
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mango production presents challenges, such as the maturation of the mango branches, which, combined with good nutrition and biochemicals involved in this process, such as carbohydrate and starch favor the development of the plant. Therefore, the use of non-destructive, fast techniques to determine the levels of these components in the plant, such as spectroscopy, can optimize the analysis of these components. Therefore, this work aimed to develop predictive models for determination of starch and carbohydrate contents in “Palmer” mango leaves using vis-nir spectroscopy subjected to different potassium sources. The work was carried out in the region of San Francisco Valley, using the following steps: (1) leaf sampling; (2) spectral analysis; (3) lab determination of carbohydrate and starch contents; and (4) development of predictive regression and classification models. The predictive regression models used were Principal Components Regression (PCR) and Partial Least Squares Regression (PLSR). Supervised discriminant models were also developed to classify mango leaves according to different potassium sources used, using linear discriminant analysis (LDA). Vis-NIR spectroscopy showed low values for the non-destructive evaluation of “Palmer” mango leaves using PCR and PLSR for carbohydrate and starch prediction with R2 of 0.58 lower than the models considered excellent (R2 >0.90); The development of classification models did not allow the discrimination of different sources of potassium in “Palmer” mango leaves with an accuracy of 64.2%. A produção de manga apresenta desafios, como a maturação dos ramos da mangueira, que aliada a boa nutrição e bioquímicos envolvidos nesse processo como o carboidrato e o amido favorece o desenvolvimento do vegetal. A utilização de técnicas não destrutivas e rápidas para determinar os teores desses componentes na planta, como a espectroscopia, pode otimizar a realização das análises desses componentes. Diante disso, este trabalho teve como objetivo desenvolver modelos preditivos para determinação de teores de amido e carboidratos em folhas de mangueira “Palmer” com o uso da espectroscopia Vis-NIR submetidas a diferentes fontes de potássio. O trabalho foi desenvolvido na região do Vale do São Francisco, seguindo as seguintes etapas: (1) a amostragem das folhas; (2) análise espectrais; (3) determinação em laboratório dos teores de carboidratos e amido; e (4) desenvolvimento dos modelos preditivos de regressão e classificação. Os modelos preditivos de regressão utilizados foram a Regressão por Componentes Principais (PCR) e a Regressão por Quadrados Mínimos Parciais (PLSR). Também foram desenvolvidos modelos discriminante supervisionado para classificar as folhas da mangueira de acordo com as diferentes fontes potássicas utilizada, utilizando a análise discriminante linear (LDA). A espectroscopia Vis-NIR apresentou valores baixos para a avaliação não destrutivas de folhas de mangueira “Palmer” utilizando PCR e PLSR para predição de carboidrato e amido com R2 de 0,582 menor que os modelos considerados excelentes (R2 >0,90); O desenvolvimento de modelos de classificação não possibilitou a discriminação das diferentes fontes de potássio em folhas de mangueira “`Palmer” com precisão de 64,28%.
ISSN:2389-9182
2389-9182
DOI:10.21897/rta.v27i2.3114