Optimized synthesis and characterization of La(OH) 3 and LaB 6 nanostructures for enhanced NIR optical filters
Abstract The present study describes a method for synthesizing nanostructured La(OH) 3 and LaB 6 materials with efficient field emission properties using the spin coating technique. The study was motivated by the significant demand for the optical properties of LaB 6 with efficient field emission pr...
Saved in:
Published in: | Physica scripta Vol. 99; no. 11; p. 115913 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
01-11-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The present study describes a method for synthesizing nanostructured La(OH) 3 and LaB 6 materials with efficient field emission properties using the spin coating technique. The study was motivated by the significant demand for the optical properties of LaB 6 with efficient field emission properties using the spin coating technique in the near-infrared (NIR) region. The optimization of the LaB 6 synthesis process for economic and reproducible results is highlighted, showcasing a systematic approach starting from La(OH) 3 formation through chemical mixing and high-temperature heating, followed by boron incorporation. The systematic methodology includes forming La(OH) 3 through chemical mixing and high-temperature heating, followed by combining it with boron to achieve the LaB 6 structure. Characterization methods such as XRD, FTIR, SEM, AFM, and SIMS validated the successful synthesis and uniformity of the materials. Optical analyses showed increased visible transmittance and reduced infrared transmittance for the LaB 6 thin film. Optical analyses showed increased visible transmittance and decreased infrared transmittance in the 110 nm thick LaB 6 film, with an absorption valley at 1000 nm. SEM images revealed microstructural features and AFM analysis indicated a homogeneous distribution of La and B atoms with an RMS value of 0.87 nm. SIMS analysis confirmed uniform atomic distribution throughout the film thickness. The optimized recipes contribute to the efficiency and controllability of the synthesis process. The presented results provide valuable insights into material synthesis methodologies and serve as a crucial reference for utilizing LaB 6 materials in infrared devices. |
---|---|
ISSN: | 0031-8949 1402-4896 |
DOI: | 10.1088/1402-4896/ad7db9 |