Human voices escape the auditory attentional blink: Evidence from detections and pupil responses

Attentional selection of a second target in a rapid stream of stimuli embedding two targets tends to be briefly impaired when two targets are presented in close temporal proximity, an effect known as an attentional blink (AB). Two target sounds (T1 and T2) were embedded in a rapid serial auditory pr...

Full description

Saved in:
Bibliographic Details
Published in:Brain and cognition
Main Authors: Akca, Merve, Bishop, Laura, Vuoskoski, Jonna Katariina, Laeng, Bruno
Format: Journal Article
Language:Norwegian
Published: 2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Attentional selection of a second target in a rapid stream of stimuli embedding two targets tends to be briefly impaired when two targets are presented in close temporal proximity, an effect known as an attentional blink (AB). Two target sounds (T1 and T2) were embedded in a rapid serial auditory presentation of environmental sounds with a short (Lag 3) or long lag (Lag 9). Participants were to first identify T1 (bell or sine tone) and then to detect T2 (present or absent). Individual stimuli had durations of either 30 or 90 ms, and were presented in streams of 20 sounds. The T2 varied in category: human voice, cello, or dog sound. Previous research has introduced pupillometry as a useful marker of the intensity of cognitive processing and attentional allocation in the visual AB paradigm. Results suggest that the interplay of stimulus factors is critical for target detection accuracy and provides support for the hypothesis that the human voice is the least likely to show an auditory AB (in the 90 ms condition). For the other stimuli, accuracy for T2 was significantly worse at Lag 3 than at Lag 9 in the 90 ms condition, suggesting the presence of an auditory AB. When AB occurred (at Lag 3), we observed smaller pupil dilations, time-locked to the onset of T2, compared to Lag 9, reflecting lower attentional processing when ’blinking’ during target detection. Taken together, these findings support the conclusion that human voices escape the AB and that the pupillary changes are consistent with the so-called T2 attentional deficit. In addition, we found some indication that salient stimuli like human voices could require a less intense allocation of attention, or noradrenergic potentiation, compared to other auditory stimuli.
Bibliography:NFR/262762
ISSN:0278-2626