On the oxidation states of metal elements in M0-3 (M=V, Nb, Ta, Db, Pr, Gd, Pa) anions

Relativistic quantum chemistry investigations are carried out to tackle the puzzling oxidation state problem in a series of MO3 trioxide anions of all d- and f-block elements with five valence electrons. We have shown here that while the oxidation states of V, Nb, Ta, Db, Pa are, as usual, all +V wi...

Full description

Saved in:
Bibliographic Details
Published in:中国科学:化学英文版 no. 4; pp. 442 - 451
Main Author: Jing Su Shuxian Hu Wei Huang Mingfei Zhou Jun Li
Format: Journal Article
Language:English
Published: 2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Relativistic quantum chemistry investigations are carried out to tackle the puzzling oxidation state problem in a series of MO3 trioxide anions of all d- and f-block elements with five valence electrons. We have shown here that while the oxidation states of V, Nb, Ta, Db, Pa are, as usual, all +V with divalent oxygen O(-II) in MO3- anions, the lanthanide elements Pr and Gd cannot adopt such high +V oxidation state in similar trioxide anions. Instead, lanthanide element Gd retains its usual +III oxi- dation state, while Pr retains a +IV oxidation state, thus forcing oxygen into a non-innocent ligand with an uncommon mono- valent radical (O') of oxidation state -I. A unique Pr"- "(0)3 biradical with highly delocalized unpairing electron density on Pr(IV) and three O atoms is found to be responsible for stabilizing the monovalent-oxygen species in PRO3- ion, while GdO3 ion is in fact an OGd+(O22-) complex with Gd(III). These results show that a naive assignment of oxidation state of a chemical element without electronic structure analysis can lead to erroneous conclusions.
Bibliography:oxidation state, non-innocent ligand, biradical, lanthanide, trioxide anion
Relativistic quantum chemistry investigations are carried out to tackle the puzzling oxidation state problem in a series of MO3 trioxide anions of all d- and f-block elements with five valence electrons. We have shown here that while the oxidation states of V, Nb, Ta, Db, Pa are, as usual, all +V with divalent oxygen O(-II) in MO3- anions, the lanthanide elements Pr and Gd cannot adopt such high +V oxidation state in similar trioxide anions. Instead, lanthanide element Gd retains its usual +III oxi- dation state, while Pr retains a +IV oxidation state, thus forcing oxygen into a non-innocent ligand with an uncommon mono- valent radical (O') of oxidation state -I. A unique Pr"- "(0)3 biradical with highly delocalized unpairing electron density on Pr(IV) and three O atoms is found to be responsible for stabilizing the monovalent-oxygen species in PRO3- ion, while GdO3 ion is in fact an OGd+(O22-) complex with Gd(III). These results show that a naive assignment of oxidation state of a chemical element without electronic structure analysis can lead to erroneous conclusions.
11-5839/O6
ISSN:1674-7291
1869-1870