On the oxidation states of metal elements in M0-3 (M=V, Nb, Ta, Db, Pr, Gd, Pa) anions
Relativistic quantum chemistry investigations are carried out to tackle the puzzling oxidation state problem in a series of MO3 trioxide anions of all d- and f-block elements with five valence electrons. We have shown here that while the oxidation states of V, Nb, Ta, Db, Pa are, as usual, all +V wi...
Saved in:
Published in: | 中国科学:化学英文版 no. 4; pp. 442 - 451 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Relativistic quantum chemistry investigations are carried out to tackle the puzzling oxidation state problem in a series of MO3 trioxide anions of all d- and f-block elements with five valence electrons. We have shown here that while the oxidation states of V, Nb, Ta, Db, Pa are, as usual, all +V with divalent oxygen O(-II) in MO3- anions, the lanthanide elements Pr and Gd cannot adopt such high +V oxidation state in similar trioxide anions. Instead, lanthanide element Gd retains its usual +III oxi- dation state, while Pr retains a +IV oxidation state, thus forcing oxygen into a non-innocent ligand with an uncommon mono- valent radical (O') of oxidation state -I. A unique Pr"- "(0)3 biradical with highly delocalized unpairing electron density on Pr(IV) and three O atoms is found to be responsible for stabilizing the monovalent-oxygen species in PRO3- ion, while GdO3 ion is in fact an OGd+(O22-) complex with Gd(III). These results show that a naive assignment of oxidation state of a chemical element without electronic structure analysis can lead to erroneous conclusions. |
---|---|
Bibliography: | oxidation state, non-innocent ligand, biradical, lanthanide, trioxide anion Relativistic quantum chemistry investigations are carried out to tackle the puzzling oxidation state problem in a series of MO3 trioxide anions of all d- and f-block elements with five valence electrons. We have shown here that while the oxidation states of V, Nb, Ta, Db, Pa are, as usual, all +V with divalent oxygen O(-II) in MO3- anions, the lanthanide elements Pr and Gd cannot adopt such high +V oxidation state in similar trioxide anions. Instead, lanthanide element Gd retains its usual +III oxi- dation state, while Pr retains a +IV oxidation state, thus forcing oxygen into a non-innocent ligand with an uncommon mono- valent radical (O') of oxidation state -I. A unique Pr"- "(0)3 biradical with highly delocalized unpairing electron density on Pr(IV) and three O atoms is found to be responsible for stabilizing the monovalent-oxygen species in PRO3- ion, while GdO3 ion is in fact an OGd+(O22-) complex with Gd(III). These results show that a naive assignment of oxidation state of a chemical element without electronic structure analysis can lead to erroneous conclusions. 11-5839/O6 |
ISSN: | 1674-7291 1869-1870 |