Multi-neighboring grids schemes for solving PDE eigen-problems——Dedicated to Professor Shi Zhong-Ci on the Occasion of his 80th Birthday

Instead of most existing postprocessing schemes, a new preprocessing approach, called multi- neighboring grids (MNG), is proposed for solving PDE eigen-problems on an existing grid G(A). The linear or multi-linear element, based on box-splines, are taken as the first stage Khuh -λh/1Mh/1Uh. In this...

Full description

Saved in:
Bibliographic Details
Published in:中国科学:数学英文版 no. 12; pp. 2677 - 2700
Main Author: SUN JiaChang
Format: Journal Article
Language:English
Published: 2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Instead of most existing postprocessing schemes, a new preprocessing approach, called multi- neighboring grids (MNG), is proposed for solving PDE eigen-problems on an existing grid G(A). The linear or multi-linear element, based on box-splines, are taken as the first stage Khuh -λh/1Mh/1Uh. In this paper, the j-th stage neighboring-grid scheme is defined as Khuh λh/j Mh/j Uh = λh/j Mh/j Uh , where gh :- Mh/j-1 Kh/1 and Mhuh is to be found as a better mass distribution over the j-th stage neighboring-grid G(/k), and Kh/1 can be seen as an expansion of Kh on the j-th neighboring-grid with respect to the (j - 1)-th mass distribution Mh_l. It is shown that for an ODE model eigen-problem, the j-th stage scheme with 2j-th order B-spline basis can reach 2j-th order accuracy and even (2j + 2)-th order accuracy by perturbing the mass matrix. The argument can be extended to high dimensions with separable variable cases. For Laplace eigen-problems with some 2-D and 3-D structured uniform grids, some 2j-th order schemes are presented for j ≤ 3.
Bibliography:PDE eigen-problem, discrete Rayleigh quotient, multi-neighboring grids schemes, B-splines
Instead of most existing postprocessing schemes, a new preprocessing approach, called multi- neighboring grids (MNG), is proposed for solving PDE eigen-problems on an existing grid G(A). The linear or multi-linear element, based on box-splines, are taken as the first stage Khuh -λh/1Mh/1Uh. In this paper, the j-th stage neighboring-grid scheme is defined as Khuh λh/j Mh/j Uh = λh/j Mh/j Uh , where gh :- Mh/j-1 Kh/1 and Mhuh is to be found as a better mass distribution over the j-th stage neighboring-grid G(/k), and Kh/1 can be seen as an expansion of Kh on the j-th neighboring-grid with respect to the (j - 1)-th mass distribution Mh_l. It is shown that for an ODE model eigen-problem, the j-th stage scheme with 2j-th order B-spline basis can reach 2j-th order accuracy and even (2j + 2)-th order accuracy by perturbing the mass matrix. The argument can be extended to high dimensions with separable variable cases. For Laplace eigen-problems with some 2-D and 3-D structured uniform grids, some 2j-th order schemes are presented for j ≤ 3.
11-1787/N
ISSN:1674-7283
1869-1862