STABLY FREE MODULES OVER $\mathbf{Z}[(C_{p}\rtimes C_{q})\times C_{\infty }^{n}]$ ARE FREE
Let $p,q$ be primes such that $q|p-1$ and set $\unicode[STIX]{x1D6F7}=C_{p}\rtimes C_{q}$ , $G=\unicode[STIX]{x1D6F7}\times C_{\infty }^{n}$ and $\unicode[STIX]{x1D6EC}=\mathbf{Z}[G]$ , the integral group ring of $G$ . By means of a fibre square decomposition, we show that stably free modules over $...
Saved in:
Published in: | Mathematika Vol. 63; no. 2; pp. 451 - 461 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
London, UK
London Mathematical Society
2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
$p,q$
be primes such that
$q|p-1$
and set
$\unicode[STIX]{x1D6F7}=C_{p}\rtimes C_{q}$
,
$G=\unicode[STIX]{x1D6F7}\times C_{\infty }^{n}$
and
$\unicode[STIX]{x1D6EC}=\mathbf{Z}[G]$
, the integral group ring of
$G$
. By means of a fibre square decomposition, we show that stably free modules over
$\unicode[STIX]{x1D6EC}$
are necessarily free. |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/S0025579316000395 |