STABLY FREE MODULES OVER $\mathbf{Z}[(C_{p}\rtimes C_{q})\times C_{\infty }^{n}]$ ARE FREE

Let $p,q$ be primes such that $q|p-1$ and set $\unicode[STIX]{x1D6F7}=C_{p}\rtimes C_{q}$ , $G=\unicode[STIX]{x1D6F7}\times C_{\infty }^{n}$ and $\unicode[STIX]{x1D6EC}=\mathbf{Z}[G]$ , the integral group ring of $G$ . By means of a fibre square decomposition, we show that stably free modules over $...

Full description

Saved in:
Bibliographic Details
Published in:Mathematika Vol. 63; no. 2; pp. 451 - 461
Main Author: Evans, J. D. P.
Format: Journal Article
Language:English
Published: London, UK London Mathematical Society 2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $p,q$ be primes such that $q|p-1$ and set $\unicode[STIX]{x1D6F7}=C_{p}\rtimes C_{q}$ , $G=\unicode[STIX]{x1D6F7}\times C_{\infty }^{n}$ and $\unicode[STIX]{x1D6EC}=\mathbf{Z}[G]$ , the integral group ring of $G$ . By means of a fibre square decomposition, we show that stably free modules over $\unicode[STIX]{x1D6EC}$ are necessarily free.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579316000395