Long-term energy-balance modeling of interannual snow and ice in Wyoming using the dynamic equilibrium concept
Many snow models in the field of hydrologic engineering do not incorporate the long-term effects of the interannual snow storage such as glaciers because glacier dynamics have a much longer timescale than river flow and seasonal snowmelt. This study proposes an appropriate treatment for inland glaci...
Saved in:
Main Author: | |
---|---|
Format: | Dissertation |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many snow models in the field of hydrologic engineering do not incorporate the long-term effects of the interannual snow storage such as glaciers because glacier dynamics have a much longer timescale than river flow and seasonal snowmelt. This study proposes an appropriate treatment for inland glaciers as systems in dynamic equilibrium that remain constant under a static climate condition. This new method considers the vertical movement of snow/ice from high elevation areas to valleys as the equilibrating factor of the glacier system. The vertical movement of snow/ice occurs by means of wind re-distribution, avalanches, and glaciation. This paper introduces and discusses the physically-based modeling of such a dynamic equilibrium snow system for long-term snow simulation at a regional scale. We apply the regional snow model (RegSnow) to a domain containing the entire state of Wyoming and couple the model to the Weather Research and Forecasting (WRF) model to compute the snow surface energy-balance. RegSnow predicted that 82.2% of interannual snow and ice storage in Wyoming may disappear by 2100 using temperature increases projected by CMIP5 GCMs, under the RCP4.5 emission scenario. |
---|---|
Bibliography: | Adviser: Noriaki Ohara. Source: Masters Abstracts International, Volume: 55-01. Civil & Architectural Engineering. |
ISBN: | 9781339054858 133905485X |