First experiment in sun-synchronous exploration
Sun-synchronous exploration is accomplished by reasoning about sunlight: where the Sun is in the sky, where and when shadows will fall, and how much power can be obtained through various courses of action. In July 2001 a solar-powered rover, named Hyperion, completed two sun-synchronous exploration...
Saved in:
Published in: | Proceedings - IEEE International Conference on Robotics and Automation Vol. 4; pp. 3501 - 3507 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
01-01-2002
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sun-synchronous exploration is accomplished by reasoning about sunlight: where the Sun is in the sky, where and when shadows will fall, and how much power can be obtained through various courses of action. In July 2001 a solar-powered rover, named Hyperion, completed two sun-synchronous exploration experiments in the Canadian high arctic (75 degree N). Using knowledge of orbital mechanics, local terrain, and expected power consumption, Hyperion planned a sun-synchronous route to visit designated sites while obtaining the necessary solar power for continuous 24-hour operation. Hyperion executed its plan and returned to its starting location with batteries fully charged after traveling more than 6 kilometers in barren, Mars-analog terrain. In this paper we describe the concept of sun-synchronous exploration. We overview the design of the robot Hyperion and the software system that enables it to operate sun-synchronously. We then discuss results from analysis of our first experiment in sun-synchronous exploration and conclude with observations. |
---|---|
Bibliography: | SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
ISSN: | 1050-4729 |