First experiment in sun-synchronous exploration

Sun-synchronous exploration is accomplished by reasoning about sunlight: where the Sun is in the sky, where and when shadows will fall, and how much power can be obtained through various courses of action. In July 2001 a solar-powered rover, named Hyperion, completed two sun-synchronous exploration...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings - IEEE International Conference on Robotics and Automation Vol. 4; pp. 3501 - 3507
Main Authors: Wettergreen, David, Dias, Bernardine, Shamah, Benjamin, Teza, James
Format: Journal Article
Language:English
Published: 01-01-2002
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sun-synchronous exploration is accomplished by reasoning about sunlight: where the Sun is in the sky, where and when shadows will fall, and how much power can be obtained through various courses of action. In July 2001 a solar-powered rover, named Hyperion, completed two sun-synchronous exploration experiments in the Canadian high arctic (75 degree N). Using knowledge of orbital mechanics, local terrain, and expected power consumption, Hyperion planned a sun-synchronous route to visit designated sites while obtaining the necessary solar power for continuous 24-hour operation. Hyperion executed its plan and returned to its starting location with batteries fully charged after traveling more than 6 kilometers in barren, Mars-analog terrain. In this paper we describe the concept of sun-synchronous exploration. We overview the design of the robot Hyperion and the software system that enables it to operate sun-synchronously. We then discuss results from analysis of our first experiment in sun-synchronous exploration and conclude with observations.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISSN:1050-4729