Conformational relaxation following reduction of the photoactive bacteriopheophytin in reaction centers from Balstochloris viridis. Influence of mutations at position M208

The photochemically trapped bacteriopheophytin (BPh) b radical anion in the active branch (phi(*-)A) of reaction centers (RCs) from Blastochloris (formerly called Rhodopseudomonas) viridis is characterized by 1H-ENDOR as well as optical absorption spectroscopy. The two site-directed mutants YF(M208)...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta Vol. 1459; no. 1; p. 191
Main Authors: Müh, F, Bibikova, M, Schlodder, E, Oesterhelt, D, Lubitz, W
Format: Journal Article
Language:English
Published: Netherlands 20-07-2000
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photochemically trapped bacteriopheophytin (BPh) b radical anion in the active branch (phi(*-)A) of reaction centers (RCs) from Blastochloris (formerly called Rhodopseudomonas) viridis is characterized by 1H-ENDOR as well as optical absorption spectroscopy. The two site-directed mutants YF(M208) and YL(M208), in which tyrosine at position M208 is replaced by phenylalanine and leucine, respectively, are investigated and compared with the wild type. The residue at M208 is in close proximity to the primary electron donor, P, the monomeric bacteriochlorophyll (BCh1), B(A), and the BPh, phiA, that are involved in the transmembrane electron transfer to the quinone, Q(A), in the RC. The analysis of the ENDOR spectra of (phi(*-)A at 160 K indicates that two distinct states of phi(*-)A are present in the wild type and the mutant YF(M208). Based on a comparison with phi(*-)A in RCs of Rhodobacter sphaeroides the two states are interpreted as torsional isomers of the 3-acetyl group of phiA. Only one phi(*-)A state occurs in the mutant YL(M208). This effect of the leucine residue at position M208 is explained by steric hindrance that locks the acetyl group in one specific position. On the basis of these results, an interpretation of the optical absorption difference spectrum of the state phi(*-)AQ(*-)A is attempted. This state can be accumulated at 100 K and undergoes an irreversible change between 100 and 200 K [Tiede et al., Biochim. Biophys. Acta 892 (1987) 294-302]. The corresponding absorbance changes in the BCh1 Q(x) and Q(y) regions observed in the wild type also occur in the YF(M208) mutant but not in YL(M208). The observed changes in the wild type and YF(M208) are assigned to RCs in which the 3-acetyl group of phiA changes its orientation. It is concluded that this distinct structural relaxation of phiA can significantly affect the optical properties of B(A) and contribute to the light-induced absorption difference spectra.
ISSN:0006-3002