Persistence of strong electron coupling to a narrow boson spectrum in overdoped Bi2Sr2CaCu2O(8+delta) tunneling data
A d-wave, Eliashberg analysis of break-junction and STM tunneling spectra on Bi2Sr2CaCu2O(8+delta) (Bi2212) reveals that the spectral dip feature is directly linked to strong electronic coupling to a narrow boson spectrum, evidenced by a large peak in alpha2F(omega). The tunneling dip feature remain...
Saved in:
Published in: | Physical review letters Vol. 96; no. 1; p. 017004 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
13-01-2006
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A d-wave, Eliashberg analysis of break-junction and STM tunneling spectra on Bi2Sr2CaCu2O(8+delta) (Bi2212) reveals that the spectral dip feature is directly linked to strong electronic coupling to a narrow boson spectrum, evidenced by a large peak in alpha2F(omega). The tunneling dip feature remains robust in the overdoped regime of Bi2212 with bulk T(c) values of 56 K-62 K. This is contrary to recent optical conductivity measurements of the self-energy that suggest the narrow boson spectrum disappears in overdoped Bi2212 and therefore cannot be essential for the pairing mechanism. The discrepancy is resolved by considering the way each technique probes the electron self-energy, in particular, the unique sensitivity of tunneling to the off-diagonal or pairing part of the self-energy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-9007 |