Novel roles for protein kinase Cdelta-dependent signaling pathways in acute hypoxic stress-induced autophagy

Macroautophagy, a tightly orchestrated intracellular process for bulk degradation of cytoplasmic proteins or organelles, is believed to be essential for cell survival or death in response to stress conditions. Recent observations indicate that autophagy is an adaptive response in cells subjected to...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 283; no. 49; pp. 34432 - 34444
Main Authors: Chen, Jo-Lin, Lin, Her H, Kim, Kwang-Jin, Lin, Anning, Forman, Henry J, Ann, David K
Format: Journal Article
Language:English
Published: United States 05-12-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Macroautophagy, a tightly orchestrated intracellular process for bulk degradation of cytoplasmic proteins or organelles, is believed to be essential for cell survival or death in response to stress conditions. Recent observations indicate that autophagy is an adaptive response in cells subjected to prolonged hypoxia. However, the signaling mechanisms that activate autophagy under acute hypoxic stress are not clearly understood. In this study, we show that acute hypoxic stress by treatment with 1% O(2) or desferroxamine, a hypoxia-mimetic agent, of cells renders a rapid induction of LC3-II level changes and green fluorescent protein-LC3 puncta accumulation, hallmarks of autophagic processing, and that this process involves protein kinase Cdelta (PKCdelta), and occurs prior to the induction of BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3). Interestingly, hypoxic stress leads to a rapid and transient activation of JNK in Pa-4 or mouse embryo fibroblast cells. Acute hypoxic stress-induced changes in LC3-II level and JNK activation are attenuated in Pa-4 cells by dominant negative PKCdeltaKD or in mouse embryo fibroblast/PKCdelta-null cells. Intriguingly, the requirement of PKCdelta is not apparent for starvation-induced autophagy. The importance of PKCdelta in hypoxic stress-induced adaptive responses is further supported by our findings that inhibition of PKCdelta-facilitated autophagy by 3-methyladenine or Atg5 knock-out renders a greater prevalence of cell death following prolonged desferroxamine treatment, whereas PKCdelta- or JNK1-deficient cells exhibit resistance to extended hypoxic exposure. These results uncover dual roles of PKCdelta-dependent signaling in the cell fate determination upon hypoxic exposure.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
DOI:10.1074/jbc.M804239200