Low molecular weight fucoidan ameliorates diabetic nephropathy via inhibiting epithelial-mesenchymal transition and fibrotic processes
Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and may lead to end-stage renal disease (ESRD) and chronic renal failure. The aim of this study was to determine whether low-molecular-weight fucoidan (LMWF) can reduce harmful transforming growth factor-β (...
Saved in:
Published in: | American journal of translational research Vol. 7; no. 9; pp. 1553 - 1563 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
e-Century Publishing Corporation
01-01-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and may lead to end-stage renal disease (ESRD) and chronic renal failure. The aim of this study was to determine whether low-molecular-weight fucoidan (LMWF) can reduce harmful transforming growth factor-β (TGF-β)-mediated renal fibrosis in DN using in vitro and in vivo experimental models. The experimental results showed that LMWF significantly reversed TGF-β1-induced epithelial-mesenchymal transition and dose-dependently inhibited accumulation of extracellular matrix proteins, including connective tissue growth factor and fibronectin. It was found that LMWF significantly reduced blood urea nitrogen and blood creatinine in both type 1 and type 2 diabetic rat models. H&E, PAS and Masson's trichrome staining of kidney tissue showed LMWF significantly reduced renal interstitial fibrosis. Treatment with LMWF significantly increased E-cadherin expression and reduced α-SMA, CTGF and fibronectin expression in both type 1 and type 2 diabetic models. LMWF also decreased the phosphorylation of Akt, ERK1/2, p38 and Smad3 in vitro and in vivo. These data suggest that LMWF may protect kidney from dysfunction and fibrogenesis by inhibiting TGF-β pathway and have the potential benefit to slow down the progression of DN. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Equal contributors. |
ISSN: | 1943-8141 1943-8141 |