Endothelin-1 potentiates capsaicin-induced TRPV1 currents via the endothelin A receptor
Endothelin-1 (ET-1) both stimulates nociceptors and sensitizes them to painful stimuli. The cellular mechanisms of the ET-1-mediated effects are only poorly understood. TRPV1, the heat-, proton-, and capsaicin-sensitive cation channel already known to be modulated by a number of cellular mediators r...
Saved in:
Published in: | Experimental biology and medicine (Maywood, N.J.) Vol. 231; no. 6; p. 1161 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-06-2006
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Endothelin-1 (ET-1) both stimulates nociceptors and sensitizes them to painful stimuli. The cellular mechanisms of the ET-1-mediated effects are only poorly understood. TRPV1, the heat-, proton-, and capsaicin-sensitive cation channel already known to be modulated by a number of cellular mediators released by painful stimuli and during inflammation, is a potential target for the action of ET-1. In immunocytochemistry of rat lumbar dorsal root ganglion using TRPV1- and ET(A) receptor-specific antibodies, both proteins were found to be co-expressed in small sensory neurons. To provide evidence that ET-1 can modulate TRPV1 activity via the ET(A) receptor, we used HEK 293 cells transiently co-expressing a fusion protein of TRPV1 and the yellow fluorescent protein (TRPV1-YFP) and the ET(A) receptor. In whole-cell patch clamp recordings of HEK293 cells co-expressing TRPV1-YFP and the ET(A) receptor, capsaicin (10 nM) elicited small currents, which were markedly potentiated when capsaicin (10 nM) and ET-1 (100 nM) were applied simultaneously. The data indicate that ET-1 potentiates TRPV1 activity via the ET(A) receptor and that this process is likely to play a crucial role in the pain-producing and pain-potentiating effects of ET-1. Thus, ET(A) receptor antagonists may be of importance in painful states with increased circulating ET-1 levels, as found in cancer and in chronic inflammation. |
---|---|
ISSN: | 1535-3702 |
DOI: | 10.3181/00379727-232-2311161 |