Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation

Phagocytosis of complement-opsonized targets is a primary function of neutrophils at sites of inflammation, and the clearance of neutrophils that have phagocytosed microbes is important for the resolution of inflammation. Our previous work suggests that phagocytosis leads to rapid neutrophil apoptos...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 278; no. 31; pp. 28443 - 28454
Main Authors: Zhang, Bin, Hirahashi, Junichi, Cullere, Xavier, Mayadas, Tanya N
Format: Journal Article
Language:English
Published: United States 01-08-2003
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phagocytosis of complement-opsonized targets is a primary function of neutrophils at sites of inflammation, and the clearance of neutrophils that have phagocytosed microbes is important for the resolution of inflammation. Our previous work suggests that phagocytosis leads to rapid neutrophil apoptosis that is inhibited by antibody to the beta2 integrin, Mac-1, and requires NADPH oxidase-derived reactive oxygen species (ROS) generated during phagocytosis. Here we report that phagocytosis-induced cell death (PICD) does not occur in Mac-1-deficient murine neutrophils, suggesting that PICD proceeds through a bona fide Mac-1-dependent pathway. A sustained, intracellular oxidative burst is associated with PICD. Furthermore, PICD does not require traditional death receptors, Fas, or tumor necrosis factor (TNF) receptor. TNF but not Fas synergizes with phagocytosis to enhance significantly PICD by increasing the oxidative burst, and this is Mac-1-dependent. Phagocytosis-induced ROS promote cleavage/activation of caspases 8 and 3, key players in most extrinsic ("death receptor") mediated pathways of apoptosis, and caspases 8 and 3 but not caspase 9/mitochondria, are required for PICD. This suggests that ROS target the extrinsic versus the intrinsic ("stress stimulus") apoptotic pathway. Phagocytosis also triggers a competing MAPK/ERK-dependent survival pathway that provides resistance to PICD likely by down-regulating caspase 8 activation. The anti-apoptotic factor granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly enhances ROS generation associated with phagocytosis. Despite this, it completely suppresses PICD by sustaining ERK activation and inhibiting caspase 8 activation in phagocytosing neutrophils. Together, these studies suggest that Mac-1-mediated phagocytosis promotes apoptosis through a caspase 8/3-dependent pathway that is modulated by NADPH oxidase-generated ROS and MAPK/ERK. Moreover, TNF and GM-CSF, likely encountered by phagocytosing neutrophils at inflammatory sites, exploit pro-(ROS) and anti-apoptotic (ERK) signals triggered by phagocytosis to promote or suppress PICD, respectively, and thus modulate the fate of phagocytosing neutrophils.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
DOI:10.1074/jbc.M210727200