Induction of tenascin-C in cardiac myocytes by mechanical deformation. Role of reactive oxygen species
Mechanical overload may change cardiac structure through angiotensin II-dependent and angiotensin II-independent mechanisms. We investigated the effects of mechanical strain on the gene expression of tenascin-C, a prominent extracellular molecule in actively remodeling tissues, in neonatal rat cardi...
Saved in:
Published in: | The Journal of biological chemistry Vol. 274; no. 31; pp. 21840 - 21846 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
30-07-1999
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mechanical overload may change cardiac structure through angiotensin II-dependent and angiotensin II-independent mechanisms. We investigated the effects of mechanical strain on the gene expression of tenascin-C, a prominent extracellular molecule in actively remodeling tissues, in neonatal rat cardiac myocytes. Mechanical strain induced tenascin-C mRNA (3.9 +/- 0.5-fold, p < 0.01, n = 13) and tenascin-C protein in an amplitude-dependent manner but did not induce secreted protein acidic and rich in cysteine nor fibronectin. RNase protection assay demonstrated that mechanical strain induced all three alternatively spliced isoforms of tenascin-C. An angiotensin II receptor type 1 antagonist inhibited mechanical induction of brain natriuretic peptide but not tenascin-C. Antioxidants such as N-acetyl-L-cysteine, catalase, and 1, 2-dihydroxy-benzene-3,5-disulfonate significantly inhibited induction of tenascin-C. Truncated tenascin-C promoter-reporter assays using dominant negative mutants of IkappaBalpha and IkappaB kinase beta and electrophoretic mobility shift assays indicated that mechanical strain increases tenascin-C gene transcription by activating nuclear factor-kappaB through reactive oxygen species. Our findings demonstrate that mechanical strain induces tenascin-C in cardiac myocytes through a nuclear factor-kappaB-dependent and angiotensin II-independent mechanism. These data also suggest that reactive oxygen species may participate in mechanically induced left ventricular remodeling. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.274.31.21840 |