The mechanism of preferential degradation of polyadenylated RNA in the chloroplast. The exoribonuclease 100RNP/polynucleotide phosphorylase displays high binding affinity for poly(A) sequence
Polyadenylation of mRNA in the chloroplast has recently been shown to target the RNA molecule for rapid exonucleolytic degradation. A model has been suggested in which the degradation of chloroplast mRNA is initiated by endonucleolytic cleavage(s) followed by the addition of poly(A)-rich sequences a...
Saved in:
Published in: | The Journal of biological chemistry Vol. 272; no. 28; pp. 17648 - 17653 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
11-07-1997
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyadenylation of mRNA in the chloroplast has recently been shown to target the RNA molecule for rapid exonucleolytic degradation. A model has been suggested in which the degradation of chloroplast mRNA is initiated by endonucleolytic cleavage(s) followed by the addition of poly(A)-rich sequences and rapid exonucleolytic degradation. When in vitro transcribed RNAs were incubated with chloroplast protein extract, competition between polyadenylated and non-polyadenylated RNAs for degradation resulted in the rapid degradation of the polyadenylated molecules and stabilization of their non-polyadenylated counterparts. To elucidate the molecular mechanism governing this effect, we determined whether the chloroplast exoribonuclease 100RNP/polynucleotide phosphorylase (PNPase) preferably degrades polyadenylated RNA. When separately incubated with each molecule, isolated 100RNP/PNPase degraded polyadenylated and non-polyadenylated RNAs at the same rate. However, when both molecules were mixed together, the polyadenylated RNA was degraded, whereas the non-polyadenylated RNA was stabilized. In RNA binding experiments, 100RNP/PNPase bound the poly(A) sequence with much higher affinity than other RNA molecules, thereby defining the poly(A)-rich RNA as a preferential substrate for the enzyme. 100RNP/PNPase may therefore be involved in a mechanism in which post-transcriptional addition of poly(A)-rich sequence targets the chloroplast RNA for rapid exonucleolytic degradation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.272.28.17648 |