Watt-level Tm:LiYF4 channel waveguide laser produced by diamond saw dicing
Low-loss surface channel waveguides with a cross-section of 30 × 30 μm2 are produced by diamond saw dicing of 6.2 at.% Tm3+, 3.5 at.% Gd3+:LiYF4 films grown by liquid phase epitaxy (LPE) on (001)-oriented bulk undoped LiYF4 substrates. Pumped by a Ti:Sapphire laser at 783 nm, a continuous-wave Tm:Li...
Saved in:
Published in: | Optics express Vol. 26; no. 19; pp. 24653 - 24662 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
17-09-2018
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low-loss surface channel waveguides with a cross-section of 30 × 30 μm2 are produced by diamond saw dicing of 6.2 at.% Tm3+, 3.5 at.% Gd3+:LiYF4 films grown by liquid phase epitaxy (LPE) on (001)-oriented bulk undoped LiYF4 substrates. Pumped by a Ti:Sapphire laser at 783 nm, a continuous-wave Tm:LiYF4 waveguide laser generated 1.30 W at 1880 nm (for π-polarization) with a slope efficiency of 80% with respect to the absorbed pump power. The laser threshold was at 80 mW. The waveguide morphology was studied revealing low roughness (3 ± 2 μm) as expressed by the propagation losses of <0.3 dB/cm. A combination of LPE and diamond saw dicing is a promising technology for multi-watt single-mode channel waveguide lasers and amplifiers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 |
DOI: | 10.1364/OE.26.024653 |