Electrochemical insights into the mechanisms of proton reduction by [Fe2(CO)6{micro-SCH2N(R)CH2S}] complexes related to the [2Fe](H) subsite of [FeFe]hydrogenase

Electrochemical investigations on a structural analogue of the [2Fe](H) subsite of [FeFe]H(2)ases, namely, [Fe(2)(CO)(6){micro-SCH(2)N(CH(2)CH(2)- OCH(3))CH(2)S}] (1), were conducted in MeCN/NBu(4)PF(6) in the presence of HBF(4)/Et(2)O or HOTs. Two different catalytic proton reduction processes oper...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal Vol. 14; no. 6; pp. 1954 - 1964
Main Authors: Capon, Jean-François, Ezzaher, Salah, Gloaguen, Frédéric, Pétillon, François Y, Schollhammer, Philippe, Talarmin, Jean
Format: Journal Article
Language:English
Published: Germany 2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrochemical investigations on a structural analogue of the [2Fe](H) subsite of [FeFe]H(2)ases, namely, [Fe(2)(CO)(6){micro-SCH(2)N(CH(2)CH(2)- OCH(3))CH(2)S}] (1), were conducted in MeCN/NBu(4)PF(6) in the presence of HBF(4)/Et(2)O or HOTs. Two different catalytic proton reduction processes operate, depending on the strength and the concentration of the acid used. The first process, which takes place around -1.2 V for both HBF(4)/Et(2)O and HOTs, is limited by the slow release of H(2) from the product of the {2 H(+)/2 e} pathway, 1-2H. The second catalytic process, which occurs at higher acid concentrations, takes place at different potentials depending on the acid present. We propose that this second mechanism is initiated by protonation of 1-2H when HBF(4)/Et(2)O is used, whereas the reduction of 1-2H is the initial step in the presence of the weaker acid HOTs. The potential of the second process, which occurs around -1.4 V (reduction potential of 1-3H(+)) or around -1.6 V (the reduction potential of 1-2H) is thus dependent on the strength of the available proton source.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0947-6539
DOI:10.1002/chem.200701454