Alterations of p16(INK4a) and p14(ARF) in patients with severe oral epithelial dysplasia

A number of genetic aberrations have been reported in end-stage squamous cell carcinoma of the head and neck, including p16(INK4a) and p14(ARF) (INK4a/ARF) inactivation rates of 70-85%. Still, the cell cycle-regulatory genes p16(INK4a) and p14(ARF) remain poorly understood in oral cavity premalignan...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Vol. 62; no. 18; pp. 5295 - 5300
Main Authors: Kresty, Laura A, Mallery, Susan R, Knobloch, Thomas J, Song, Huijuan, Lloyd, Mary, Casto, Bruce C, Weghorst, Christopher M
Format: Journal Article
Language:English
Published: United States 15-09-2002
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A number of genetic aberrations have been reported in end-stage squamous cell carcinoma of the head and neck, including p16(INK4a) and p14(ARF) (INK4a/ARF) inactivation rates of 70-85%. Still, the cell cycle-regulatory genes p16(INK4a) and p14(ARF) remain poorly understood in oral cavity premalignant lesions. This study evaluated INK4a/ARF locus alterations in 26 patients (28 samples) deemed to be at increased risk for malignant transformation to squamous cell carcinoma due to the diagnosis of severe oral epithelial dysplasia. Microscopically confirmed dysplastic oral epithelium and matching normal tissue were laser capture-microdissected from paraffin sections, DNA was isolated, and molecular techniques were used to evaluate p16(INK4a) and p14(ARF) gene deletion, mutation, loss of heterozygosity (LOH), and hypermethylation events. Deletion of exon 1beta, 1alpha, or 2 was detected in 3.8%, 11.5%, and 7.7% of patients, respectively. INK4a and ARF mutations were detected in 15.4% and 11.5% of patients with severe dysplasia of the oral epithelium. All identified mutations occurred in the INK4a/ARF conserved exon 2. Allelic imbalance was assessed using three markers previously reported to show high LOH rates in head and neck tumors. LOH was found in 42.1%, 35.0%, and 82.4% of patients for the markers IFNalpha, D9S1748, and D9S171, respectively. Hypermethylation of p16(INK4a) and p14(ARF) was detected in 57.7% and 3.8% of patients, respectively, using nested, two-stage methylation-specific PCR. The highest rates of p16(INK4a) hypermethylation occurred in lesions of the tongue and floor of the mouth. In addition, p16(INK4a) hypermethylation was significantly linked to LOH in two or more markers. These data support that INK4a/ARF locus alterations are frequent events preceding the development of oral cancer and that p16(INK4a) inactivation occurs to a greater extent in oral dysplasia than does p14(ARF) inactivation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-5472