K+ depolarization and phospholipid metabolism in frog sartorius muscle
K+ depolarization evokes phosphatidylinositol response, i.e. the increased 32P orthophosphate labelling of phosphatidylinositol in frog sartorii muscles. The phosphatidylinositol response seems to be closely related to K+ depolarization and not to the transient Ca2+ release at the beginning of depol...
Saved in:
Published in: | General physiology and biophysics Vol. 2; no. 5; pp. 329 - 337 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Slovakia
01-10-1983
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | K+ depolarization evokes phosphatidylinositol response, i.e. the increased 32P orthophosphate labelling of phosphatidylinositol in frog sartorii muscles. The phosphatidylinositol response seems to be closely related to K+ depolarization and not to the transient Ca2+ release at the beginning of depolarization. It ceases as soon as the muscles depolarized by 90 mmol/l KCl for a short period of time are repolarized, while it continues when the depolarization is maintained. When the muscles are depolarized with 20 mmol/l KCl, the phosphatidylinositol response is also observed. This response is not suppressed by drugs that block Ca2+ mobilization. Other agents like caffeine, azide or EGTA which induce some effects similar to that of K+ depolarization, do not evoke phosphatidylinositol response. Rather, they simply cause a decrease in the labelling of phospholipids, phosphatidylinositol being the least affected. In muscles derived from frogs maintained under healthy conditions Ca2+ release in the early phase of K+ depolarization does not cause significant changes in phospholipid labelling. However, in muscles from frogs starving for many months, a large decrease in the labelling of phospholipids is observed in the early phase of K+ depolarization. It is postulated that the changes in the physicochemical state of the membrane and not Ca2+ gating mechanism or free cell Ca2+ level are crucial in the phosphatidylinositol response in the frog sartorii muscles depolarized by high K+. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0231-5882 |