A DNA damage–induced phosphorylation circuit enhances Mec1ATR Ddc2ATRIP recruitment to Replication Protein A

The cell cycle checkpoint kinase Mec1ATR and its integral partner Ddc2ATRIP are vital for the DNA damage and replication stress response. Mec1–Ddc2 "senses" single-stranded DNA (ssDNA) by being recruited to the ssDNA binding Replication Protein A (RPA) via Ddc2. In this study, we show that...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 120; no. 14; pp. 1 - e2300150120
Main Authors: Yates, Luke A, Tannous, Elias A, Morgan, R Marc, Burgers, Peter M, Zhang, Xiaodong
Format: Journal Article
Language:English
Published: Washington National Academy of Sciences 04-04-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cell cycle checkpoint kinase Mec1ATR and its integral partner Ddc2ATRIP are vital for the DNA damage and replication stress response. Mec1–Ddc2 "senses" single-stranded DNA (ssDNA) by being recruited to the ssDNA binding Replication Protein A (RPA) via Ddc2. In this study, we show that a DNA damage–induced phosphorylation circuit modulates checkpoint recruitment and function. We demonstrate that Ddc2–RPA interactions modulate the association between RPA and ssDNA and that Rfa1-phosphorylation aids in the further recruitment of Mec1–Ddc2. We also uncover an underappreciated role for Ddc2 phosphorylation that enhances its recruitment to RPA-ssDNA that is important for the DNA damage checkpoint in yeast. The crystal structure of a phosphorylated Ddc2 peptide in complex with its RPA interaction domain provides molecular details of how checkpoint recruitment is enhanced, which involves Zn2+. Using electron microscopy and structural modeling approaches, we propose that Mec1–Ddc2 complexes can form higher order assemblies with RPA when Ddc2 is phosphorylated. Together, our results provide insight into Mec1 recruitment and suggest that formation of supramolecular complexes of RPA and Mec1–Ddc2, modulated by phosphorylation, would allow for rapid clustering of damage foci to promote checkpoint signaling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Lorraine Symington, Columbia University Irving Medical Center, New York, NY; received January 4, 2023; accepted February 24, 2023
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2300150120