Prognostic value of non-invasive programmed ventricular stimulation after VT ablation to predict VT recurrences

The prognostic value of (non)-invasive programmed ventricular stimulation (NIPS) to predict recurrences of ventricular tachycardia (VT) is under discussion. Optimal endpoints of VT ablation are not well defined, and optimal timepoint of NIPS is unknown. The goal of this study was to evaluate the abi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of interventional cardiac electrophysiology
Main Authors: Müller, Julian, Chakarov, Ivaylo, Nentwich, Karin, Berkovitz, Artur, Barth, Sebastian, Ausbüttel, Felix, Wächter, Christian, Lehrmann, Heiko, Deneke, Thomas
Format: Journal Article
Language:English
Published: Netherlands 16-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The prognostic value of (non)-invasive programmed ventricular stimulation (NIPS) to predict recurrences of ventricular tachycardia (VT) is under discussion. Optimal endpoints of VT ablation are not well defined, and optimal timepoint of NIPS is unknown. The goal of this study was to evaluate the ability of programmed ventricular stimulation at the end of the VT ablation procedure (PVS) and NIPS after VT ablation to identify patients at high risk for VT recurrence. Between January 2016 and February 2022, consecutive patients with VT and structural heart disease undergoing first VT ablation and consecutive NIPS were included. In total, 138 patients were included. All patients underwent NIPS through their implanted ICDs after a median of 3 (1-5) days after ablation (at least 2 drive cycle lengths (500 and 400 ms) and up to four right ventricular extrastimuli until refractoriness). Clinical VT was defined by comparison with 12-lead electrocardiograms and stored ICD electrograms from spontaneous VT episodes. Patients were followed for a median of 37 (13-61) months. Of the 138 patients, 104 were non-inducible (75%), 27 were inducible for non-clinical VTs (20%), and 7 for clinical VT (5%). In 107 patients (78%), concordant results of PVS and NIPS were observed. After 37 ± 20 months, the recurrence rate for any ventricular arrhythmia was 40% (normal NIPS 29% vs. inducible VT during NIPS 66%; log-rank p = 0.001) and for clinical VT was 3% (normal NIPS 1% vs. inducible VT during NIPS 9%; log-rank p = 0.045). Positive predictive value (PPV) and negative predictive value (NPV) of NIPS were higher compared to PVS (PPV: 65% vs. 46% and NPV: 68% vs. 61%). NIPS revealed the highest NPV among patients with ICM and LVEF > 35%. Patients with inducible VT during NIPS had the highest VT recurrences and overall mortality. Patients with both negative PVS and NIPS had the lowest any VT recurrence rates with 32%. Early re-ablation of patients with recurrent VTs during index hospitalization was feasible but did not reveal better long-term VT-free survival. In patients after VT ablation and structural heart disease, NIPS is superior to post-ablation PVS to stratify the risk of VT recurrences. The PPV and NPV of NIPS at day 3 were superior compared to PVS at the end of the procedure to predict recurrent VT, especially in patients with ICM.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1572-8595
1572-8595
DOI:10.1007/s10840-024-01883-y