Quantitation of ER Morphology and Dynamics
The plant endoplasmic reticulum forms a network of tubules connected by three-way junctions or sheet-like cisternae. Although the network is three-dimensional, in many plant cells, it is constrained to thin volume sandwiched between the vacuole and plasma membrane, effectively restricting it to a 2-...
Saved in:
Published in: | Methods in molecular biology (Clifton, N.J.) Vol. 2772; p. 49 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
2024
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The plant endoplasmic reticulum forms a network of tubules connected by three-way junctions or sheet-like cisternae. Although the network is three-dimensional, in many plant cells, it is constrained to thin volume sandwiched between the vacuole and plasma membrane, effectively restricting it to a 2-D planar network. The structure of the network, and the morphology of the tubules and cisternae can be automatically extracted following intensity-independent edge-enhancement and various segmentation techniques to give an initial pixel-based skeleton, which is then converted to a graph representation. ER dynamics can be determined using optical flow techniques from computer vision or persistency analysis. Collectively, this approach yields a wealth of quantitative metrics for ER structure and can be used to describe the effects of pharmacological treatments or genetic manipulation. The software is publicly available. |
---|---|
ISSN: | 1940-6029 |
DOI: | 10.1007/978-1-0716-3710-4_5 |