The human breast carcinoma cell line SW 613-S: an experimental system to study tumor heterogeneity in relation to c-myc amplification, growth factor production and other markers (review)

Amplification of the c-myc gene has been frequently reported in breast carcinomas. However the precise function of the c-myc protein is still unknown and the nature of the selective advantage offered to a cell by an overexpression of such a protein is unclear. We are addressing this question using t...

Full description

Saved in:
Bibliographic Details
Published in:Anticancer research Vol. 9; no. 5; p. 1265
Main Authors: Lavialle, C, Modjtahedi, N, Lamonerie, T, Frebourg, T, Landin, R M, Fossar, N, Lhomond, G, Cassingena, R, Brison, O
Format: Journal Article
Language:English
Published: Greece 01-09-1989
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Amplification of the c-myc gene has been frequently reported in breast carcinomas. However the precise function of the c-myc protein is still unknown and the nature of the selective advantage offered to a cell by an overexpression of such a protein is unclear. We are addressing this question using the SW 613-S human breast carcinoma cell line as a model system. This cell line harbours an amplified c-myc gene and a mutated c-Ki-ras gene. By various criteria the amplified c-myc gene of SW613-S cells appears undistinguishable from a normal human c-myc gene. The SW613-S cell line is heterogeneous: it contains cells with a high level of amplification and carrying the extra copies of the c-myc gene in double minute chromosomes (DMs) and cells with few c-myc genes integrated into chromosomes. DM-containing cells are progressively lost upon in vitro cultivation but are selected for during in vivo growth, as tumors in nude mice, or by cultivating the cells in a chemically defined, serum-free medium or under conditions preventing anchorage. Clones with different levels of amplification and different chromosomal localization of the c-myc copies were isolated from the SW 613-S cell population. Those with a high level of amplification and expression of the c-myc gene are tumorigenic in nude mice, whereas those with a low level are not. Introduction of c-myc gene copies by transfection confers tumorigenicity to the nontumorigenic clones, indicating that a high level of amplification of the c-myc gene contributes to the tumorigenic phenotype of SW 613-S cells. Tumorigenic clones grow unattached, are able to proliferate in a chemically defined medium, and produce high levels of several growth factors (e.g. TGF-alpha, IGF2). Nontumorigenic clones are more dependent upon anchorage for growth, show a restricted growth in defined medium, and produce low or undetectable level of the growth factors tested. We have identified several genes, besides c-myc, the expression level of which is markedly different in the two types of clones. TGF-alpha, IGF2, PDGF-A, int-2, cytokeratins K8 and K18 and ferritin H chain are overexpressed in tumorigenic clones. In contrast, c-erbB1 (EGF receptor), c-jun, vimentin and p53 are expressed at a higher level in the nontumorigenic clones. Finally the major histocompatibility class I antigens, ferritin L chain, TGF-beta and c-Ki-ras, are examples of genes expressed at the same level in both types of clones.
ISSN:0250-7005