Influence of topological edge states on the properties of Al/Bi2Se3/ Al hybrid Josephson devices
In superconductor-topological insulator-superconductor hybrid junctions, the barrier edge states are expected to be protected against backscattering, to generate unconventional proximity effects, and, possibly, to signal the presence of Majorana fermions. The standards of proximity modes for these t...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Vol. 89; no. 13 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Physical Society (APS)
21-04-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In superconductor-topological insulator-superconductor hybrid junctions, the barrier edge states are expected to be protected against backscattering, to generate unconventional proximity effects, and, possibly, to signal the presence of Majorana fermions. The standards of proximity modes for these types of structures have to be settled for a neat identification of possible new entities. Through a systematic and complete set of measurements of the Josephson properties we find evidence of ballistic transport in coplanar Al-Bi2Se3-Al junctions that we attribute to a coherent transport through the topological edge state. The shunting effect of the bulk only influences the normal transport. This behavior, which can be considered to some extent universal, is fairly independent of the specific features of superconducting electrodes. A comparative study of Shubnikov–de Haas oscillations and scanning tunneling spectroscopy gave an experimental signature compatible with a two-dimensional electron transport channel with a Dirac dispersion relation. In conclusion, a reduction of the size of the Bi2Se3 flakes to the nanoscale is an unavoidable step to drive Josephson junctions in the proper regime to detect possible distinctive features of Majorana fermions. |
---|---|
Bibliography: | USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division SC0004556 |
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.89.134512 |