Simple zeros of $L$-functions and the Weyl-type subconvexity

Let $f$ be a self-dual primitive Maass or modular forms for level $4$. For such a form $f$, we define \begin{align*} N_f^s(T)\!:=\!|\{\rho \in \mathbb{C} : |\Im(\rho)| \leq T, \text{ $\rho$ is a non-trivial simple zero of $L_f(s)$} \}|. \end{align*} We establish an omega result for $N_f^s(T)$, which...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Korean Mathematical Society pp. 167 - 193
Main Authors: 조재현, 오경원
Format: Journal Article
Language:English
Published: 대한수학회 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $f$ be a self-dual primitive Maass or modular forms for level $4$. For such a form $f$, we define \begin{align*} N_f^s(T)\!:=\!|\{\rho \in \mathbb{C} : |\Im(\rho)| \leq T, \text{ $\rho$ is a non-trivial simple zero of $L_f(s)$} \}|. \end{align*} We establish an omega result for $N_f^s(T)$, which is $N_f^s(T)=\Omega \big( T^{\frac{1}{6}-\epsilon} \big)$ for any $\epsilon>0$. For this purpose, we need to establish the Weyl-type subconvexity for $L$-functions attached to primitive Maass forms by following a recent work of Aggarwal, Holowinsky, Lin, and Qi. KCI Citation Count: 0
Bibliography:https://jkms.kms.or.kr/journal/view.html?doi=10.4134/JKMS.j220242
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j220242