Estimation of β-ray dose in air and soil from Fukushima Daiichi Power Plant accident

Following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident of 2011, which deposited radionuclides across Tohoku and northern Kanto, β-ray dose evaluation has been performed to estimate radiation exposure for small creatures like insects as well as human skin. Using the Monte Carlo radiatio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of radiation research Vol. 55; no. 3; pp. 476 - 483
Main Authors: Endo, Satoru, Tanaka, Kenichi, Kajimoto, Tsuyoshi, Thanh, Nguyen Tat, Otaki, Joji M., Imanaka, Tetsuji
Format: Journal Article
Language:English
Published: England Oxford University Press 01-05-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident of 2011, which deposited radionuclides across Tohoku and northern Kanto, β-ray dose evaluation has been performed to estimate radiation exposure for small creatures like insects as well as human skin. Using the Monte Carlo radiation transport code MCNP-4C, we calculated the β-ray dose for 129mTe, 129Te, 131I, 132Te, 132I, 134Cs and 137Cs in air as a function of altitude and in soil. These calculations of β-dose rate for each radionuclide were conducted for the conditions following the FDNPP accident, with 137Cs deposition assumed to be 1000 kBq/m2. Beta-ray dose rate was found to be ∼10-fold (resp. 5-fold) higher than the γ-ray dose rate in the soil (resp. on the ground surface) at ∼20 days after deposition, and ∼4-fold (resp. 1.7-fold) higher after 6 months or more. For convenience, the height dependence of the ratio for 0, 10, 30, 90, 180 and 365 days after deposition was obtained by a fitting function. The cumulative 70 µm β-ray dose at 30, 60 and 90 days after deposition was estimated to be 35, 45 and 53 mGy for the ground surface, and 61, 79 and 92 mGy in the soil, respectively. These results can be used to estimate the external β-ray exposure for small creatures as well as for human skin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0449-3060
1349-9157
DOI:10.1093/jrr/rrt209